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Computing accurate yet efficient approximations to the solutions of the electronic Schrödinger equation has been a
paramount challenge of computational chemistry for decades. Quantum Monte Carlo methods are a promising avenue
of development as their core algorithm exhibits a number of favorable properties: it is highly parallel, and scales favor-
ably with the considered system size, with an accuracy that is limited only by the choice of the wave function ansatz.
The recently introduced machine-learned parametrizations of quantum Monte Carlo ansatzes rely on the efficiency of
neural networks as universal function approximators to achieve state of the art accuracy on a variety of molecular sys-
tems. With interest in the field growing rapidly, there is a clear need for easy to use, modular, and extendable software
libraries facilitating the development and adoption of this new class of methods. In this contribution, the DEEPQMC
program package is introduced, in an attempt to provide a common framework for future investigations by unify-
ing many of the currently available deep-learning quantum Monte Carlo architectures. Furthermore, the manuscript
provides a brief introduction to the methodology of variational quantum Monte Carlo in real space, highlights some
technical challenges of optimizing neural network wave functions, and presents example black-box applications of the
program package. We thereby intend to make this novel field accessible to a broader class of practitioners both from
the quantum chemistry as well as the machine learning communities.

I. INTRODUCTION

Recently, the application of machine learning to a wide
range of problems from the natural sciences has proven to be
highly successful. Computational chemistry is a field of par-
ticular activity: machine learning force fields model compli-
cated quantum mechanical effects at the resolution of atoms,
while machine learned functionals elevate density functional
theory to unprecedented accuracy 1–3. These approaches uti-
lize supervised training to learn from accurate quantum me-
chanical reference calculations, and make predictions for un-
seen configurations. While this results in fast yet accurate ap-
proximations to the quantum many-body problem, it inher-
ently depends on high quality training data, which represents
a major bottleneck of these methods.

An orthogonal way to incorporate machine learning into
computational chemistry is its application to improve ab-initio
calculations. Notably, over the course of the last years a new
family of deep-learning quantum Monte Carlo (deep QMC)
methods has developed, incorporating advancements from the
field of machine learning 4. Common to the deep QMC
methods is the utilization of neural networks to parametrize
highly expressive ansatzes, efficiently approximating the so-
lutions of the time-independent electronic Schrödinger equa-
tion, thereby providing a complete description of the sys-
tem’s electronic properties. Originating from spin lattices5,
deep-learning ansatzes were soon applied to molecules in
real-space6. With the development of PauliNet7 and Fer-
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miNet8, the accuracy of neural-network wave functions be-
came the state of the art within variational Monte Carlo.
Subsequent works have further increased the accuracy of
these ansatzes9–12, extended them to the simulation of excited
states13 as well as periodic systems14,15, combined them with
pseudo-potentials16, used them in the calculation of inter-
atomic forces17, utilized them in diffusion Monte Carlo sim-
ulations18,19, and extended them to share parameters across
multiple molecular geometries20–22 or distinct molecules23,24.

Although the method of optimizing deep-learning wave
function ansatzes using variational quantum Monte Carlo was
developed only a few years ago, it already competes with
some of the most accurate traditional quantum chemistry
methods on molecules with up to ∼100 electrons. Exhibiting
competitive scaling with the number of electrons, it has the
potential to be extended to larger systems in the near future.
Achieving this will no doubt require further method develop-
ment as well as efficient implementations of the core algo-
rithms, creating the need for open source libraries that facili-
tate experimentation and contribution from the community.

Accompanying the above summarized research, vari-
ous software libraries for variational optimization of deep-
learning wave functions have been released25–28. While
NETKET25 provides a general implementation of variational
optimization of machine learning wave functions mainly for
lattice systems with recent extensions to continuous space, the
research for molecular machine learning wave functions was
carried out across various repositories and is lacking a unified
framework. The presented DEEPQMC program package aims
to provide a unified implementation of the developments in the
field of deep-learning molecular wave functions. It intends to
be easy to use out of the box, while allowing full control and
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flexibility over the ansatz and variational training for advanced
users. The library is designed to be modular, facilitating the
rapid development and testing of individual components, and
easing the implementation of new features. It makes use of the
composable function transformations and just-in-time compi-
lation provided by the JAX library29 to express performant
GPU accelerated algorithms using concise Python30 syntax.
Neural network models are encapsulated in higher-level ob-
jects, using the haiku deep-learning library31. The project is
open-source and distributed online under the MIT license26.

II. THEORY

A. The electronic structure problem

In computational chemistry, molecular systems are often
described by the non-relativistic molecular Hamiltonian using
the Born–Oppenheimer approximation:

Ĥ =
N

∑
i=1

(
− 1

2
∆ri −

M

∑
I=1

ZI
|ri−RI | +

i−1

∑
j=1

1
|ri−r j |

)
, (1)

where ri denotes the position of the ith electron, while ZI
and RI are the charge and position of the Ith nucleus, respec-
tively. To determine the electronic structure of these molec-
ular systems, one must solve the associated time independent
Schrödinger equation

Ĥψ(x1, ...,xN) = Eψ(x1, ...,xN) , (2)

where xi = (ri,σi) comprise the positions of the electrons and
their spin. A solution is an eigenfunction of the Hamiltonian,
the electronic wave function ψ , and its corresponding energy
eigenvalue E. With the exact wave function at hand, any ob-
servable electronic property of the system can in principle be
computed, as the wave function gives a complete description
of the system’s electronic state. Since electrons have half-
integer spin, their wave functions must be antisymmetric with
respect to electron exchanges

ψ(. . . ,xi, . . . ,x j, . . .) =−ψ(. . . ,x j, . . . ,xi, . . .) . (3)

While general wave functions are complex-valued, the solu-
tions of the time independent Schrödinger equation can be
chosen as real without loss of generality, due to the hermiticity
of the molecular Hamiltonian. Therefore in all of the follow-
ing discussions, as well as in the DEEPQMC library, only real
valued wave functions are considered.

B. Variational optimization

Even with the aforementioned approximations, the elec-
tronic Schrödinger equation involving the molecular Hamil-
tonian can only be solved analytically for hydrogenic atoms
– the special case of the two-body problem. This makes
computational quantum chemistry a mainly numerical field,

where different methods yield approximate solutions at vary-
ing trade-offs of accuracy and computational cost. The class
of variational quantum chemistry methods phrases the solu-
tion of the Schrödinger equation as a minimization problem.
The ground state of the Hamiltonian is approximated by opti-
mizing the parameters θ of a trial wave function (ansatz) ψθ,
to minimize the expectation value of the Hamiltonian

θ′ = argmin
θ

⟨Ĥ⟩ψθ
. (4)

This objective is rooted in the variational principle of quan-
tum mechanics, which states that the ground state energy of
the Hamiltonian is a lower bound for the energy expectation
value of any wave function from the associated antisymmetric
Hilbert space H−

E0 ≤ min
ψ

⟨Ĥ⟩ψ ψ ∈ H−. (5)

The variational methods can be categorized based on the
means of calculating the expectation value ⟨·⟩, and choice of
ansatz ψθ.

The DEEPQMC program package implements VMC in real
space (first quantization) with neural network wave functions.
In VMC, expectation values are estimated through a stochastic
sampling of electron configurations

⟨Ĥ⟩ψθ
=

⟨ψθ|Ĥ|ψθ⟩
⟨ψθ|ψθ⟩

=

∫
dr1, ...,drNψ∗

θ(r1, ...,rN)Ĥψθ(r1, ...,rN)∫
dr1, ...,drN |ψθ(r1, ...,rN)|2

=

∫
dr1, ...,drN |ψθ(r1, ...,rN)|2Eloc[ψθ](r)∫

dr1, ...,drN |ψθ(r1, ...,rN)|2
= Er∼|ψθ |2

[
Eloc[ψθ](r)

]

≈ 1
n

n

∑
r∼|ψθ |2

Eloc[ψθ](r) .

(6)

Because the molecular Hamiltonian does not depend on the
spin, it is possible to compute the energy using the spatial
wave function ψ(r1, ...,rN), where fixed spins are assigned to
the electrons and spin-up and spin-down electrons are treated
as distinguishable32. The convention is to sort the electrons
by spin and consider the first N↑ electrons to have spin-up and
the remaining N↓ = N −N↑ electrons to possess spin-down.

In practice, a VMC simulation then consists of choosing
an ansatz (see Section III), and optimizing it in an alternating
scheme of sampling and parameter updates. The expectation
value in (6) is approximated by sampling the probability den-
sity given by the square of the wave function (see Section V),
followed by a parameter update using the gradient of the ex-
pectation value (see Section IV).

C. Neural network wave functions

Being exact in principle, the choice of the wave function
ansatz is crucial for the efficiency of a VMC simulation. Re-
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cently, neural network parametrizations of real-space molec-
ular wave functions were introduced by PauliNet7, and Fer-
miNet8. They both rely on generalized Slater determinants,
that augment the single particle orbitals of conventional Slater
determinants with many-body correlation,

ψθ(r1, ...,rN) = ∑pcp det[Ap(r)] , (7)

Ap
ik = φ

p
k (ri,{r↑},{r↓})×ϕ

p
k (ri) . (8)

Here, φ
p
k are many-body orbitals, and ϕ

p
k are single particle

envelopes that ensure the correct asymptotic behavior of the
wave function with increasing distance from the nuclei. The
set notation {·} is to be understood as a permutation invari-
ant dependence on the spin-up electrons r↑, and spin-down
electrons r↓, respectively. The ansatz may be a linear com-
bination of multiple generalized Slater determinants, which
are distinguished with the p index. The form of φ

p
k in (8) is

closely related to the backflow transformation33, which intro-
duces quasi-particles to obtain many-body orbital functions.
The key observation motivating this augmentation is that the
antisymmetry of Slater determinants constructed from many-
body orbitals is preserved as long as the orbital functions are
equivariant with the exchange of electrons,

P∥
i jφk(ri,{r↑},{r↓}) = φk(r j,{r↑},{r↓}) , (9)

where P∥
i j is the operator exchanging same-spin electrons i and

j.
Most of the currently used deep-learning molecular wave

functions7,8,11 share the functional form of (7), and (8), and
differ only in the parametrization of the many-body orbitals
φ

p
k and single-particle envelopes ϕ

p
k . DEEPQMC aims to pro-

vide a general framework for variational optimization of deep-
learning molecular wave functions, facilitating the investiga-
tion of the design space spanned by the PauliNet, FermiNet,
and DeepErwin neural network ansatzes.

D. Pseudopotentials

Despite the favorable asymptotic scaling of VMC with the
number of electrons, systems containing heavy nuclei remain
challenging due to a variety of reasons. The high energy of
electrons near these nuclei complicates simulations by spoil-
ing the optimization and reducing the effectiveness of MCMC
sampling. Furthermore, the kinetic energy of these electrons
reaches the relativistic regime, requiring the treatment of rel-
ativistic effects that are not accounted for in the standard non-
relativistic molecular Hamiltonian of (1). On the other hand,
while the core regions of heavily charged nuclei contribute
dominantly to the total energy, they are typically unchanged
during chemical processes and thus have little effect on the
chemically relevant relative energies. Therefore most quan-
tum chemistry methods targeted at computing relative ener-
gies reduce the above outlined difficulties, by treating the
outer (valence) electrons separately from the inner (core) elec-
trons.

The approach most suited for implementation in the con-
text of variational optimization of deep-learning wave func-
tions is the use of pseudopotentials, which has been previously
demonstrated by Li et al.16. In this method, the core electrons
are excluded from the explicit calculation and replaced by ad-
ditional terms in the Hamiltonian, to simulate their influence
on the remaining Nv valence electrons. The modified Hamil-
tonian reads as

Ĥ =
Nv

∑
i=1

(
− 1

2
∆ri +

i−1

∑
j=1

1
|ri−r j |

)
+V̂PP . (10)

The V̂PP pseudopotential term is in turn decomposed to local
and non-local parts

V̂PP =
M

∑
I=1

Nv

∑
i=1

(
V I(riI)+

lmax

∑
l=0

W I
l (riI)P̂iI

l

)
, (11)

where riI = |ri −RI |, V I and W I
l are sets of scalar functions

describing the local and non-local pseudopotential contribu-
tions, while P̂iI

l = ∑m=l
m=−l |lm⟩iI ⟨lm|iI is a projection operator

of the i-th electron on spherical harmonics centered on the I-th
nucleus. To evaluate the contribution of the non-local part of
the pseudopotential (second term of (11)) one considers inte-
grals of the form

⟨r|W I
l P̂iI

l |ψ⟩
⟨r|ψ⟩ =W I

l (riI)
l

∑
m=−l

Ylm(ΩiI)

×
∫

Ylm(Ω′
iI)

∗ ψ(r1,...,(riI ,Ω
′
iI),...,rN)

ψ(r1,...,(riI ,ΩiI),...,rN)
dΩ′

iI

(12)

where Ylm is a spherical harmonic and (riI ,ΩiI) denotes the
position vector of the i-th electron ri, expressed in spherical
coordinates centered on nucleus I. Following the first im-
plementation of pseudopotentials for deep-learning molecular
wave functions by Li et al.16, the above integral is approxi-
mated using an icosahedral quadrature of 12-points.

The scalar functions V I and W I
l are typically pre-computed

by expanding them in a Gaussian basis, and fitting the ex-
pansion parameters directly to a database of reference ener-
gies. The DEEPQMC program package currently includes
the widely used BFD34, and the most recent ccECP35 pseu-
dopotentials, with an application of the latter presented in Sec-
tion VIII B.

III. WAVE FUNCTION DESIGN SPACE

DEEPQMC implements a variety of options to obtain the
equivariant many-body orbitals φ

p
k and the accompanying en-

velopes ϕ
p
k , covering PauliNet, FermiNet, DeepErwin and

their derivatives. In the following, the main architectural con-
cepts of these wave function ansatzes will be described in
more detail. For ease of use DEEPQMC provides predefined
configuration files to obtain the above mentioned ansatzes,
while allowing their interpolation through a manual choice of
hyperparameters.
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A. Graph Neural Networks

Central to the neural network wave function ansatzes is the
computation of equivariant many-body embedding vectors for
the electrons, which are used downstream to obtain the en-
tries of the generalized Slater determinant. Many strategies
of obtaining these embeddings can be unified in the frame-
work of graph neural networks (GNNs). GNNs are well suited
to model functions on graphs that exhibit certain permuta-
tional symmetries, and can be adapted to describe electrons
of molecules in real-space.

An electronic configuration of a molecule can be encoded
as a graph, where the nodes are electrons and nuclei, and
the connecting edges carry pairwise features, e.g. difference
vectors. GNNs are functions of these graphs, yielding high-
dimensional latent space embeddings of the nodes. The elec-
tronic node embeddings are initialized with single-electron
features and iteratively updated to incorporate many-body in-
formation of the electronic environment. Using graph convo-
lutions, the updates are invariant under the exchange of elec-
trons in the environment, and the conditions of (9) are ful-
filled.

The most relevant aspects of the GNN architecture imple-
mented in DEEPQMC are sketched on the right pane of Fig-
ure 1, and are discussed in detail in the following. Electron
positions (spins) are denoted with r (σ ), while R and Z in-
dicate nuclei positions and charges. Node and edge quanti-
ties are denoted with the superscripts (n) and (e), respectively.
Furthermore, l indexes the GNN interaction layers, θ denotes
functions parametrized by MLPs, and t runs over the different
edge types (those between electrons of identical or opposite
spins, or between electrons and nuclei), node types (electron
or nuclei nodes) or message types. Lastly, vertical brackets
indicate the different options implemented in DEEPQMC for
the computation of various quantities.

The graph representation:

A graph is a natural way to denote the electronic config-
uration of a molecule in real-space. The nodes of the graph
represent particles (electrons and nuclei), carrying informa-
tion such as spin or nuclear charge. The edges support the
difference vectors between the particles, resulting in a repre-
sentation invariant under global translation. Note that using
internal coordinates that are invariant under global rotation
may not be sufficient to represent all wave functions (simple
counterexamples are atomic wave functions with P symme-
try), and can only be employed with a careful treatment of the
spatial symmetries.

To implement a variety of wave function ansatzes, DEEP-
QMC provides configuration options to define the specifics
of the graph construction outlined above. Most importantly,
the nodes corresponding to nuclei, and their respective nuclei-
electron edges can optionally be excluded from the graph. In
this case, electron-nuclei information can still be introduced
to the GNN, by initializing the electron embeddings using a
concatenation of the difference vectors between the positions

of the given electron and all nuclei (see the second case of
(13)).

Node features:

The output of DEEPQMC GNNs are electron node embed-
dings f(n)

i which are subsequently used to generate the many-
body orbitals that constitute the entries of the generalized
Slater determinants and an optional trainable Jastrow factor.
To enforce the equivariance of these quantities with respect
to the exchange of electrons, the initialization of the electron
embeddings has to be chosen appropriately. In DEEPQMC
one can either use identical embeddings for all electrons of
the same spin (invariant under permutation of same-spin elec-
trons), or a concatenation of the electron nuclei difference vec-
tors (equivariant under electron permutations)

f(n),0,el
i =

{
E

(n),el
θ (σi)

E
(n),el
θ (ri −R1, ...,ri −RN) ,

(13)

where E
(n),el
θ are parameterized node embedding functions

implemented through MLPs.
If the GNN is chosen to explicitly consider electron-

nuclei interactions, the embeddings associated with the nu-
clear nodes have to be initialized besides the electronic em-
beddings. DEEPQMC implements fixed nuclear node embed-
dings f(n)I , that either distinguish all nuclei or depend on the
respective atom type:

f(n),0,nuc
I =

{
E

(n),nuc
θ (I)

E
(n),nuc
θ (ZI) .

(14)

Edge features :

The edges of the graph hold the pairwise differences of
node positions (ri j) and their embeddings are consequently
initialized as

f(e),0,t
(e)

i j = E (e),t(e)
(ri j) , (15)

where E (e),t(e)
is an edge type dependent featurization based

on the pairwise differences. This may correspond to directly
feeding the difference vectors, using the pairwise distances,
expanding in a basis of Gaussians or working with rescaled
difference vectors amongst other options. In later interaction
layers, the original edge embeddings are either reused or iter-
atively updated,

f(e),l,t
(e)

i j =

{
f(e),0,t

(e)

i j

ul,t(e)

θ (f(e),l−1,t(e)

i j ) ,
(16)

with the latter option making use of a parametrized update
function ul,t(e)

θ , thus increasing the effective depth of the ar-
chitecture at the cost of additional MLPs. The parameters of
the update function ul,t(e)

θ may be shared across different edge
types.
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ri ZI
σi RI

embedding

cusp jastrow orbitals env

⊗

det

⊗

⊗

Ψ

f
(n),l
i f

(e),l
iJ f

(n),l
I

f
(e),l
ij

conv/aggr

update

ri ZIσi RI

⊕ ×L

(rij, |rij|) (riJ , |riJ |)

f
(n),L
i

(riJ , |riJ |)(rij, |rij|)

mlp

mlp mlp

mlpmlp

mlp mlp mlp

emb emb

Σdet

(17)

(18)

(13) (14)(15)(15)

(16)(16)

(24) (23) (19) (20)

(8)

FIG. 1. Sketch of a general neural network wave function ansatz and its graph neural network architecture. This sketch comprises the
implemented design space for the neural network wave function (left) and the GNN architecture (right). Solid lines can carry MLPs and dotted
lines correspond to forwarding without further change. Numbers in parentheses refer to the corresponding equations of the main text. The
choice among the drawn connections, the depths of the associated MLPs as well as the aggregation and update rules distinguish the previously
published works PauliNet, FermiNet, and DeepErwin.

Message generation:

The electron embeddings are updated in each interaction
layer by aggregating messages passed along the graph edges.
These messages are constructed via an elementwise product
between functions of the sending node and edge embeddings
(graph convolution),

ml,t(m)

i = ∑
j∈t(n)

wl,t(e)

θ (f(e),l,t
(e)

i j ) ·hl,t(n)

θ (f(n),l,t
(n)

j ) . (17)

The superscript t(n) on the node features specifies the subset
of sending nodes and the superscript t(e) on the edge features
depends on the type of the sending and the receiving nodes re-
spectively. The choice of how to distinguish electron-electron
messages based on their spin (relative spin of sending and re-
ceiving electron, spin of sending electron, or no distinction
between messages from spin-up and spin-down electrons) is
another hyperparameter of the GNN. Optionally, the above
sum over the edges can be normalized by dividing it with
the number of edges. Note that messages depending only on
node (edge) information can be obtained by setting the func-
tion wl,t(e)

θ (hl,t(n)

θ ) to return identity. The superscript t(m) runs
over all the constructed messages, which may include differ-
ent choices of wl,t(e)

θ and hl,t(n)

θ .

Electron embedding update:

To obtain updated electron embeddings, messages from
various edge types are combined and added to a residual con-
nection. DEEPQMC implements a few protocols for the com-
bination of messages, that can be summarized as follows

f(n),l+1,el
i = f(n),l,el

i +





∑t(m) gl,t(m)

θ

(
ml,t(m)

i

)

gl
θ

(
∑t(m) ml,t(m)

i

)

gl
θ

(⊕
t(m) ml,t(m)

i

)
,

(18)

where
⊕

refers to the concatenation of the messages. Ad-
ditionally to the messages constructed according to equation
(17) the message types t(m) can include a residual connection
f(n),li such that the trainable self-interaction of FermiNet and
DeepErwin can be reproduced.

In the above outlined general GNN framework a wide va-
riety of ansatzes can be obtained. Furthermore, the imple-
mentation of DEEPQMC and its GNN framework focus on
facilitating rapid extensions with new ansatz variants either
by exploration within the existing hyperparameter space or by
extending it with new features.

B. Orbital construction

The entries of the generalized Slater determinant in (8) are
obtained as products of many-body orbitals φ

p
k and envelopes

ϕ
p
k . The many-body orbitals are functions of the final equiv-
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ariant electron embeddings

φ
p
k (ri,{r↑},{r↓}) = κθ(f

(n),L
i ), (19)

where κθ is an MLP applied electronwise, projecting the em-
bedding dimension to the required number of orbitals. For the
ϕ

p
k envelopes, DEEPQMC implements linear combinations of

exponentials centered on the nuclei

ϕ
p
k (ri) = ∑I∑βI ω

p
kβI

exp
(
−||Σp

kβI
(ri −RI)||α

)
, (20)

where ω
p
kβI

and Σp
kβI

are trainable parameters and βI indexes
the basis function centered on atom I. The hyperparame-
ter α ∈ (1,2) represents the choice of Slater type orbitals
with α = 1, and Gaussian type orbitals (GTOs) with α = 2.
DEEPQMC provides an option to restrict the envelopes to be
isotropic (Σp

kβI
:= σ

p
kβI

· I). The GTOs can be initialized from
the molecular orbital coefficients of reference solutions with
standard quantum chemistry basis sets obtained in PySCF36.

C. Determinant construction

Because the antisymmetry of the wave function is required
with respect to the exchange of same-spin particles only,
Slater determinants in VMC are typically considered block
diagonal and are factored into a spin-up and a spin-down com-
ponent

ψθ = ∑pcp det
[
A↑,p(r)

]
det
[
A↓,p(r)

]
. (21)

Additionally, DEEPQMC implements the full determinant op-
tion explored by Lin et al.10, which constructs a single deter-
minant using both spin-up and spin-down electrons

ψθ = ∑pcp det
[
A↿⇂,p(r)

]
. (22)

It’s noted that since the many-body orbitals are not equivariant
under the exchange of opposite spin electrons, the full deter-
minant ansatz is still not antisymmetric with respect to these
permutations. Instead, a full determinant can practically be
understood as an expansion in multiple spin-factorized deter-
minants, e.g. by relying on the generalized Laplace expansion
of determinants to expand det

[
A↿⇂,p(r)

]
according to the rows

corresponding to spin-up electrons

det
[
A↿⇂(r)

]
= ∑SεS det

[
A↑,S(r)

]
det
[
A↓,S̄(r)

]
. (23)

Here, S runs over all subsets of the orbitals that contain as
many elements as the number of spin-up electrons, S̄ stands
for the complement subset of S, A↑,S(r) denotes the subma-
trix of A↿⇂(r) formed from the orbitals in S and the spin-up
electrons, while εS is the sign of the permutation defined by
the subset S. For the block diagonal matrices of (21), the de-
terminants for all subsets of spin-up orbitals containing off-
diagonal elements evaluate to zero and the sum in (23) reduces
to a single product of a spin-up and spin-down determinant.
Note that since the many-body orbitals defined in (19) are not

equivariant with respect to exchanges of electrons with oppo-
site spins, the terms on the right hand side of (23) with differ-
ent Ss will in general be unrelated. In practice, it is conceiv-
able that due to the concrete form of parametrization of the
many-body orbitals, there remains some structure in the set of
factorized determinants, that makes the full determinant more
effective than using an equivalent number of spin-factorized
determinants formed from independent orbitals.

D. Jastrow factor and cusp correction

The antisymmetry of the wave function is retained when
multiplying it with a global correction term symmetric under
the exchange of the same spin particles. This symmetric cor-
rection, traditionally called a Jastrow factor, is well suited to
introduce known asymptotics to the ansatz. DEEPQMC im-
plements a learnable Jastrow factor eJ , where J is computed
from the permutation invariant sum of many-body electron
embeddings

J = ηθ

(
∑

i
f(n),Li

)
, (24)

with ηθ again being implemented by an MLP. Furthermore,
DEEPQMC provides a fixed Jastrow factor that implements
the known asymptotic behavior 37 when two electrons ap-
proach

γ(r) = ∑
i< j

− αci j

1+α|ri − r j|
, (25)

where ci j is 1
4 if the electrons i and j are of the same spin and

1
2 if the electrons possess opposite spins and the hyperparam-
eter alpha scales the width of the correction term. If cuspless
Gaussian envelopes are used, a similar cusp correction can be
employed for the nuclei

γ(r,R) = ∑
i,I

αZI

1+α|ri −RI |
, (26)

serving as a simple replacement for the more involved tech-
nique utilized by Hermann et al.7.

E. Log-representation of the wave function

The output of the (unnormalized) neural network wave
functions typically spans many orders of magnitude, poten-
tially resulting in instabilities due to finite floating-point pre-
cision. In order to improve numerical stability, DEEPQMC
represents wave functions in the log-domain

ψ =
(
sign(ψ), log(|ψ|)

)
. (27)

We mitigate over- and underflow problems during the com-
putation of the determinant by performing it directly in the
log-domain using the appropriate slogdet function provided
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by JAX. In order to perform the summation over multiple de-
terminants φ p we apply the log-sum-exp trick

log
(∣∣∑

p
φ

p∣∣
)
= max{log(|φ p|)}

+log
(∣∣∑

p
sign(φ p)exp

(
log(|φ p|)

−max{log(|φ p|)}
)∣∣
)
.

(28)

Note that for the variational principle to remain valid, it is suf-
ficient to ensure the antisymmetry of the trial wave function,
and its explicit sign is not needed for the evaluation of any of
the quantities involved in the optimization (30).

IV. TRAINING

In this section, some technical aspects of the variational
optimization of deep-learning trial wave functions are dis-
cussed. While these ansatzes are trained within the standard
VMC framework, the characteristics of their optimization dif-
fer markedly from other VMC ansatzes, mainly due to the
greatly increased parameter count introduced by neural net-
works. On the other hand, it is also distinct from most other
deep-learning settings owing to the unusual complexity of the
loss function and the self-supervised setting, where training
data is generated in parallel to the optimization.

A. Loss function and gradient trick

As discussed in Section II B, VMC relies on the variational
principle by optimizing the wave function ansatz to minimize
the expectation value of the local energies. From a machine
learning perspective, this translates to considering the loss
function

L (θ) = Er∼|ψθ |2
[
Eloc[ψθ](r)

]
. (29)

Naively computing the gradient of this loss would involve tak-
ing derivatives of the local energies Eloc[ψθ] with respect to
the ansatz parameters θ. However, evaluating the local en-
ergy already involves second derivatives of the wave function
with respect to the electron coordinates due to the Laplacian
in (1). Consequently, this naive gradient computation would
necessitate taking mixed third derivatives of the ansatz.

To reduce the computational costs and numerical instabili-
ties associated with higher order derivatives, a different unbi-
ased estimator of the loss gradient is utilized,

∇θL (θ) = 2Er∼|ψθ |2
[(

Eloc[ψθ](r)

−L (θ)
)
∇θ log|ψθ|

]
.

(30)

The derivation of this estimator exploits the hermiticity of the
Hamiltonian and is given in full detail by Inui et al.38. It re-
places the derivatives of the local energy with a simple gradi-
ent of the wave function, therefore it is expected to be more
efficient and numerically stable to evaluate than the direct gra-
dient computation.

B. Local energy evaluation

The evaluation of the local energies of the wave function
ansatz is by far the most computationally demanding part of
the training (and evaluation)

Eloc[ψθ](r) =− 1
2 ∑

i

(∆riψθ(r)
ψθ(r)

)
+V (r)

=− 1
2 ∑

i

(
∆ri log |ψθ(r)|

+
(
∇ri log |ψθ(r)|

)2
)
+V (r).

(31)

While the potential energy term is very cheap to evaluate, the
cost of the Laplacian within the kinetic energy term scales
steeply with the number of electrons. In this step, one obtains
second derivatives of the wave function with respect to the
electron coordinates. We obtain these derivatives of the wave
function by applying automatic differentiation in backward-
forward mode, which we confirmed to be a good choice in
the setting of molecular wave functions. Further discussions
regarding the memory bottleneck associated with the Lapla-
cian and details regarding the implementation choices are pre-
sented in the Appendix A.

C. Pretraining

Choosing initial values for ansatz parameters is a non-trivial
question common to many computational chemistry methods.
One need only think of the sensitivity of the self-consistent it-
erations to the initial guess in Hartree–Fock (HF) and related
methods39–41. The case of deep-learning VMC ansatzes is no
different – a random initialization of the neural network pa-
rameters according to some of the widely adopted schemes
of the machine learning community can lead to the optimiza-
tion diverging or converging to local minima. This problem
becomes increasingly severe with growing system size, pre-
sumably due to the higher-dimensional, more complex wave
functions of larger molecules and their intricate nodal struc-
ture.

A practical solution to this issue is the initialization of the
wave function based on a cheap reference solution. To that
end DEEPQMC interfaces with PYSCF36, enabling the ini-
tialization of wave functions from the coefficients of a pre-
ceding HF or multi-configurational self consistent field (MC-
SCF) calculation. While this allows the direct initialization
of the neural network wave function ansatz as introduced by
Hermann et al.7, subsequent work suggested that explicitly
incorporating an approximate reference wave function in the
model can deteriorate performance11. Instead a short, super-
vised pretraining with respect to a reference solution before
the self-supervised variational optimization is recommended.
In this step, the many-body orbitals of the ansatz are trained
to match the reference by minimizing the pretraining loss

Lp(θ) = Er∼|ψθ |2
[
∑
ki

(
ϕ

ref
k (ri)

−φk(ri,{r↑},{r↓})×ϕk(ri)
)2]

,

(32)
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where ϕ ref
k are the occupied orbitals of the HF/MCSCF wave

function. Unlike the variational loss of (29), computing Lp
does not involve evaluating the Laplacian of the ansatz, which
means that pretraining requires significantly less computa-
tional resources than variational training. Initialization with
pretrained orbitals, as introduced by Pfau et al.8, improves
the convergence properties of the variational training and, if
well balanced with the subsequent variational optimization,
can even slightly boost the final accuracy, as Gerard et al. re-
cently demonstrated11.

D. Gradient clipping

Despite the utilization of sophisticated gradient estimators
and pretraining, the convergence of the variational optimiza-
tion is still often hindered by outliers in the training batches of
local energies. The existence of these outliers is not surpris-
ing, considering that the electrostatic energy is singular when
two particles coincide, while the kinetic energy is singular at
the nodes of the wave function – energy contributions that the
shape of the wave function precisely levels out in later stages
of the training. While the outliers are valid contributions to
the energy expectation value, their presence can inject a lot
of noise into the gradient estimates. To reduce their contribu-
tion to the parameter update, the loss and its gradient (given in
(29) and (30)) are evaluated using clipped local energies Êµ,σ

loc ,
where µ is the center and σ is the half-width of the clipping
window.

Regarding concrete choices for µ and σ , some empirical
findings have been reported in the related literature. Investi-
gating transition metal atoms using pseudopotentials, Li and
coworkers report16, that choosing σ = 10× std(Eloc) signifi-
cantly outperforms all other options they’ve considered. More
recently, von Glehn et al.12 found that centering the clip-
ping window at the median of local energies, and using the
mean absolute deviation from the median to determine σ , im-
proves the training of multiple deep-learning ansatzes. Con-
sidering the practical importance of the clipping mechanism,
DEEPQMC implements the algorithm of von Glehn et al.12,
along with an analogous logarithmically scaling “soft” clip-
ping scheme introduced by Hermann et al.7, but also offers
full flexibility to the user in specifying custom clipping func-
tions.

Finally, it should be highlighted that the local energies are
only to be clipped for computing the gradient of the loss dur-
ing optimization. Since clipping can introduce a bias to the
estimate of the energy expectation value, variational energy
estimates can only be obtained from unclipped local energies.

E. Optimizer

Utilizing natural gradient descent optimization42 or
Kronecker-factored approximations thereof43 has proven to
be a crucial ingredient to the success of variational opti-
mization of deep-learning wave functions on molecular sys-
tems8,11,12,44,45. Consequently, DEEPQMC makes use of

the Kronecker-Factored Approximate Curvature (KFAC) opti-
mizer implementation of A. Botev and J. Martens46. To show-
case the importance of the choice of the optimizer, the perfor-
mance of KFAC is compared to the commonly employed first-
order optimizer AdamW47, on variational trainings on six test
systems. The obtained training energy curves are plotted in
Figure 2. To account for the 10–25% longer per iteration run
time of KFAC compared to AdamW, the wall clock time of the
training (instead of the usual iteration count) is shown on the
horizontal axes. The results show that the slightly increased
per-iteration cost is offset by the significantly improved per-
iteration convergence speed of the KFAC optimizer. Further-
more, it is found that the increase in the relative cost of KFAC
over AdamW optimization is smaller for systems with larger
numbers of electrons. In practice, this means that the last per-
cents of correlation energy can be recovered much more effi-
ciently with KFAC, resulting in improved final energies for a
given computational budget.

The effectiveness of natural gradient descent in this setting
can be rationalized through its connection to the stochastic re-
configuration method8,48, known from traditional variational
quantum Monte Carlo optimization49,50.

These higher order methods utilize the Fisher information
of the unnormalized density associated with the wave function
as a preconditioner to the gradients. KFAC extends the appli-
cation range of natural gradient descent by low-rank approxi-
mating the Fisher information, facilitating its computation for
neural network wave functions with large numbers of model
parameters.

Instead of following the steepest descent in parameter
space, an optimization step with the preconditioned gradient
is in the direction of steepest descent in distribution space,
with distance defined by the Kullback–Leibler (KL) diver-
gence51. Considering that in VMC the predicted quantity
ψθ(r) directly defines the distribution p(r|θ) ∝ |ψθ(r)|2, one
concludes that a natural gradient step is in the direction of
maximal loss decrease for a given KL divergence between ψθ

and ψθ+dθ. This is an advantageous property, as relying on the
KL divergence results in updates that are independent of the
way ψθ is parameterized, as opposed to the steepest descent
where the Euclidean metric introduces strong dependence.

V. SAMPLING

An important characteristic of VMC is that the data (elec-
tron positions) used to fit the model is generated in tandem
with the optimization, by sampling the probability distribution
of the electronic degrees of freedom defined by the square of
the wave function. This sampling task comes with its own
challenges, due to its tight coupling with the training. For
the variational principle to remain valid, the samples used to
evaluate (6) must be equilibrated according to the distribution
r ∼ |ψθ(r)|2. Furthermore, since ψθ is updated in every train-
ing iteration, the sampling must account for the correspond-
ing changes in the distribution of the electron positions. To
carry out this demanding sampling task in a computationally
efficient manner, the DEEPQMC program package offers two
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FIG. 2. Comparing the performance of the AdamW and KFAC
optimizers. Total energy errors during the training process are
shown for beryllium, lithium hydride, methane, ammonia, water, and
cyclobutadiene. The horizontal axes show the wall clock time of the
training, measured on a single Nvidia GTX 1080 Ti GPU. To ob-
tain smooth training curves, the exponential moving average of the
training energy is plotted. While on smaller systems (Be and LiH)
AdamW converges slightly faster, due to its lower per-iteration cost,
on the larger systems the benefit of using KFAC is clear.

optimized Markov chain Monte Carlo (MCMC) algorithms.
Along with the Random Walk MCMC algorithm52,53, referred
to as Metropolis sampler, the Metropolis-Adjusted Langevin
Algorithm54 (MALA), referred to as Langevin sampler, is also
implemented, that proposes walker updates using overdamped
Langevin dynamics. The implemented MALA includes the
correction proposed by Hermann et al.7, which scales the elec-
tron step sizes around the nuclei to avoid "overshooting" the
latter. Additionally, changes of the wave function during train-
ing can be accounted for by re-equilibration after each gradi-
ent step or using a batch reweighting scheme. In the follow-
ing sections, these MCMC samplers along with the above de-
scribed sampling difficulties are characterized in more detail.

A. Energy convergence

First, the convergence of the energy expectation value es-
timate is investigated, when sampling an unchanging, previ-
ously trained ansatz. In order to draw n = nb × ns electron
samples {r}i j, distributed according to |ψθ(r)|2, a batch of nb
many walkers is propagated for ns MCMC steps. Based on
the electron samples the energy expectation value is estimated
as

⟨E⟩= 1
n

nb

∑
i=1

ns

∑
j=1

Eloc[ψθ]({r}i j) . (33)

Following the central limit theorem32,55, the sampling error
of such estimates decays proportional to n−1/2. To approxi-
mate the sampling error, we utilize the nonoverlapping batch
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FIG. 3. Top: Evaluation of a trained wave function ansatz, bot-
tom: sampling error for the evaluation of a trained ansatz. The
convergence of the energy expectation value is depicted during the
evaluation of an optimized CH4 ansatz using two thousand MCMC
walkers. In the top pane, sampling is performed with the Random
Walk MCMC algorithm. The evaluated energy is compared to the fi-
nal training energy, with shaded areas showing error estimates. In the
bottom pane, the convergence of the sampling errors of evaluations
with the Metropolis sampler and the Langevin sampler are compared.
The sampling errors converge as n−1/2 with the number of samples
n, as expected from the central limit theorem.

means estimator, as reviewed by Flegal et al.55. We first obtain
independent estimates of the energy by averaging the local en-
ergies over the walker trajectories (batches)

⟨E⟩i =
1
ns

ns

∑
j=1

Eloc[ψθ]({r}i j) . (34)

Considering these batches, the sampling error is then esti-
mated as

⟨σE⟩=
√

∑nb
i=1(⟨E⟩i −⟨E⟩)2

nb(nb −1)
. (35)

The convergence of the energy estimate and its error bar
throughout the evaluation of an ansatz trained on the CH4
molecule is plotted in Figure 3. In the top pane, the final value
of the exponential walking mean of the training energies, and
its estimated error are also shown with a horizontal line and
shaded area. It can be seen from this plot that the energy es-
timate of the evaluation converges gradually towards the fi-
nal training energy as expected, while its sampling error con-
verges towards zero. Note that due to the parameter updates
during the optimization, the energy estimate from the training
is an unreliable estimate and a thorough evaluation of the en-
ergy expectation value requires sampling the ansatz with fixed
parameters.

On the bottom pane of Figure 3, the convergence of the es-
timated sampling error is compared between the Metropolis
sampler and the Langevin sampler. Importantly, the expected
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FIG. 4. Autocorrelation times of the local energy samples. The
top pane shows the MCMC sampling autocorrelation time τ , as de-
fined in Section V B, for a sequence of atoms and the ground state of
cyclobutadiene. The bottom pane shows the run time of performing
τ sampling steps for the same systems. The electrons are sampled
using either the Metropolis sampler or the Langevin sampler. Fol-
lowing the suggestion of Sokal56, the autocorrelation times are esti-
mated using MCMC chains of length ≈ 5τ .

n−1/2 convergence behavior is observed for both methods.
Comparing the two algorithms, it can be seen that the error
of MALA converges slightly faster than that of Random Walk
MCMC, indicating a lower degree of correlation between the
subsequent positions of the walkers of the Langevin sampler.

B. Decorrelated sampling

To characterize the phenomenon of correlated samples
hinted at in Section V A, autocorrelation functions of the local
energy samples are investigated. The autocorrelation function
of the local energies sampled by a single MCMC chain is de-
fined as:

ρEloc(t) =
∫ ∞

−∞

(
Et ′+t

loc −µEloc

)(
Et ′

loc −µEloc

)
dt ′ , (36)

where Et
loc denotes the local energy sampled at step t, and

µEloc is the mean of the local energies over the entire trajec-
tory. The autocorrelation time of the local energy is then com-
puted as τ ′ = 2

∫ ∞
0 ρEloc(t)dt. Finally, τ is obtained by taking

the mean of τ ′s over all propagated MCMC chains, providing
a simple measure of local energy autocorrelation.

The autocorrelation times for five atoms of increasing size
and the cyclobutadiene molecule are plotted on the upper pane
of Figure 4, for both the Metropolis and the Langevin sam-
pler. The general trend of longer autocorrelation times for
larger systems can be observed for the Metropolis sampler.
One of the main causes of this trend is the increasing nuclear
charge, which induces higher and higher peaks in the distribu-
tion of the electrons near the nuclei. These pronounced peaks
necessitate shorter update proposal radii, ultimately resulting
in a higher correlation between subsequent samples. Further-

more, the autocorrelation time is expected to grow with the
increasing complexity of the wave functions and their nodal
surfaces. On the other hand, the Langevin sampler seems less
affected by this trend, delivering largely constant autocorre-
lation times for all systems. It is reasonable to assume that
by explicitly making use of information about the gradient of
the wave function, the MALA update proposal retains bet-
ter decorrelation efficiency than Random Walk MCMC, when
considering more and more complicated wave functions. Fi-
nally, the showcased autocorrelation times are in reasonably
good agreement with the fact that the default number of decor-
relating steps performed between parameter updates is chosen
between 10–30 in the currently used neural wave function pro-
gram packages.

The experiments depicted in Figure 4 also demonstrate a
slightly smaller correlation between subsequent samples of
the Langevin sampler in comparison to those of the Metropo-
lis sampler, for all but the smallest of systems. On the bot-
tom pane of Figure 4, the wall clock run time of performing τ

sampling steps are shown for each system, to account for the
slightly increased computational cost of the MALA update
proposal. Considering wall clock run times, the Metropolis
sampler is more efficient on atoms up to carbon, while the
Langevin sampler performs slightly to considerably better on
the larger atoms and cyclobutadiene. While we find MALA
to be more efficient than Random Walk Metropolis, we ob-
serve that for larger systems with heavier nuclei it could result
in less stable optimization. To improve the black-boxed na-
ture of the method, we applied Random Walk MCMC in all
subsequent experiments.

VI. SCALING

Understanding the scaling of a method’s computational cost
with the considered system size is of utmost importance in
the field of quantum chemistry, where a pervasive caveat of
the most accurate approaches is their unfavorable scaling be-
havior. Given its high accuracy, the asymptotic scaling of
VMC (typically listed with N4)32 is considered favorable. Al-
though this general scaling is indeed much better than e.g.
the N7 scaling of the gold-standard CCSD(T) method, and
on par with the scaling of hybrid density functionals (such
as DM213), deep QMC calculations incur a larger prefactor,
resulting in much higher practical costs on systems of interme-
diate size. While reducing this prefactor is an important long
term goal of method developers in the field, investigating the
method’s scaling is also of interest, to estimate the prospect of
system sizes feasible with further improvement and serve as a
baseline for future developments. In this section, the scaling
of the computational cost of the variational training of deep-
learning ansatzes is investigated using the DEEPQMC pro-
gram package. Further scaling aspects of the pseudopoten-
tial implementation, and design choices regarding the major
computational bottlenecks of the algorithm are discussed in
Appendix A.

The theoretical scaling of VMC (N4) is obtained when com-
bining the N3 cost of the determinant evaluation with an addi-
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FIG. 5. Scaling of the computational cost with system size. The
figure depicts the time in seconds per variational optimization step
for systems with up to 45 electrons. The timings were obtained for
training steps with a batch size of 2000 run, on a single A100 GPU.
An exponential fit gives the scaling exponent of 2.79 for the hydrogen
chains and 2.37 for the atoms respectively.

tional factor of N from the Laplacian required in the compu-
tation of the kinetic energy. In practice, however, for simula-
tions with the currently feasible system sizes, the determinant
evaluation makes up only a fraction of the computational cost,
which is instead dominated by the evaluation of the neural
networks of the ansatz. To investigate the practical scaling of
a variational training step in DEEPQMC, single iteration run
times are compared across atoms with increasing atomic num-
bers, as well as across chains containing an increasing number
of hydrogen atoms (Figure 5). Although the systems contain
different numbers of particles, due to the parametrization with
GNNs the total parameter count of the wave function ansatz
changes only marginally between systems. On the other hand,
owing to the varying numbers of nuclei, isoelectronic species
can have slightly different computational requirements. The
system classes of atoms and hydrogen chains were chosen,
as they represent the lower and upper bounds respectively,
on the number of nuclei a neutral system with a fixed num-
ber of electrons can contain. Consequently, the scaling of the
run time with the number of electrons is also expected to be
bounded by these system classes. With the tight empirical
bounds of N2.36−2.79 depicted in Figure 5, the observed scal-
ing of DEEPQMC is still far below the theoretical estimate of
N4, highlighting the potential for extension to larger systems.

VII. ANSATZ VALIDATION

Relying on the general framework introduced above, the
DEEPQMC software suite enables the use of many of the pre-
viously published deep-learning ansatzes by providing config-
uration files to reproduce PauliNet7, FermiNet8 and DeepEr-
win11. To validate our implementation of these ansatzes, the
hyperparameters of sampling, optimization, and GNN archi-
tecture are compared in depth to those of the respective ref-

erence implementations. Additionally, it is verified that when
using the same parameters, the DEEPQMC implementations
predict the same wave function value and local energy as their
reference counterparts for a given configuration of electrons
and nuclei. Note that we have refrained from exactly match-
ing the cusp-corrected GTOs of PauliNet, because subsequent
work has demonstrated that explicitly including a reference
solution is limiting the accuracy of the ansatz. However,
by combining Gaussian envelopes initialized from the coeffi-
cients of a reference calculation with a nuclear cusp correction
in the Jastrow factor (26) it is possible to obtain a variant of
PauliNet within DEEPQMC, that matches the characteristics
of the original ansatz.

In Figure 6 the empirical performance of the various
ansatzes is checked against results published in the literature
for a small set of molecules. It can be seen that our DEEP-
QMC implementation of PauliNet, FermiNet, and DeepErwin
matches the reference energies well. The remaining discrep-
ancies of FermiNet result from slightly different experimental
setups, such as an increased number of reference optimization
steps (200 000 compared to 50 000 used here) and batch size
(4096 compared to 2048 used here), or an older TensorFlow-
based implementation being used in case of N2. The impact of
these changes on the deviations of the model accuracy high-
lights the importance and difficulty of comparing ansatzes im-
plemented in different codebases under the same experimental
conditions.

As a further contribution, we introduce and analyze the per-
formance of a new default ansatz for the DEEPQMC pro-
gram package, which we refer to as PauliNet2. This exem-
plary ansatz was optimized to have a good trade-off between
accuracy and trainable model parameters. Despite achiev-
ing a similar accuracy as FermiNet and DeepErwin for the
small systems under investigation (see Figures 6 and 7), the
PauliNet2 ansatz has only about a third of the model parame-
ters of FermiNet and a quarter of DeepErwin (i.e. for the CO
molecule 239 829, 766 944, and 998 816 parameters respec-
tively). The ansatz combines the SchNet-like graph convo-
lutions of PauliNet (17) with the iterative update of the edge
embeddings of FermiNet (18). Edge features are constructed
from difference vectors between the electrons and isotropic
exponentials are used as envelopes. Furthermore, the ansatz
comprises a trainable Jastrow factor (24) as well as the fixed
electronic cusp correction (25). While these hyperparameters
are found to be suitable for the presented experiments, it is
conceivable that an extended hyperparameter search targeting
specific applications could further improve its performance.
The detailed settings of the discussed ansatzes can be found
in the respective configuration files shipped with the DEEP-
QMC package.

VIII. APPLICATION EXAMPLES

In this section, the ease of applying the DEEPQMC pro-
gram package as a black-box method to obtain electronic en-
ergies is demonstrated on benchmark datasets. Two widely
different example problems are chosen in order to showcase
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FIG. 6. Validating the DEEPQMC implementation of various
ansatzes by comparing their accuracy to published results ob-
tained with their respective reference implementations. Note that
results obtained with the DEEPQMC or DeepErwin codebases were
computed using 50 000 variational optimization steps and a batch
size of 2048, while the FermiNet reference results used 200 000
training steps and 4096 samples in a batch. Results computed with
the reference implementations are taken from the works of Pfau8,
Spencer44, and Gerard11.

the general applicability of the presented method. The exper-
iments are performed using DEEPQMC command line inter-
face, which exposes all configuration options of the software
suite while also allowing for effortless submission of simple
calculations. Short usage examples of the DEEPQMC com-
mand line interface are provided in Appendix B.

A. Small molecule reactions

The electronic contributions to the reaction energies of 12
reactions involving small inorganic molecules and hydrocar-
bons are investigated. These reactions were used by Nemec57

to benchmark the accuracy of Slater–Jastrow (SJ) type trial
wave functions, constructed following Drummond et al.58 us-
ing electron-electron, electron-nucleus, and electron-electron-
nucleus terms in the Jastrow factor. The 14 participating

molecules are built from H, C, O, N, and F atoms, containing
at least 2 and at most 22 electrons. To facilitate the compari-
son with the DMC results of Nemec57, the same molecular ge-
ometries are considered, obtained from the work of Feller59.
Reference energies are taken from the review of O’Neill60. All
electron, complete basis set extrapolated CCSD(T) energies
are computed in house, using the PySCF program package36.

First, single-point electronic energies obtained for the par-
ticipating molecules are compared in Figure 7. On the verti-
cal axis, the error of the recovered total energy is plotted, for
VMC and DMC calculations utilizing SJ type trial wave func-
tions, and for VMC with deep-learning ansatzes. Looking at
Figure 7, one can observe that the total energy errors of SJ-
VMC ansatzes are consistently above 47 mEh (with a mean of
114 mEh), while the associated DMC errors are in the range
of 8 - 50 mEh (26 mEh on average). In comparison, deep-
learning ansatzes exhibit at maximum only 11 mEh total en-
ergy error, with a mean deviation of 2.6 mEh. While the main
goal of quantum chemistry methods is to accurately model
energy differences, rather than recover exact total energies,
it is encouraging to see that DEEPQMC and deep-learning
ansatzes in general are very competitive in this area.

The accuracy of the energy differences obtained with SJ-
DMC, CCSD(T), and deep-learning QMC methods are com-
pared in Figure 8. Note that energy differences obtained with
SJ-VMC are not shown in this figure, as they are an order of
magnitude less accurate than the depicted approaches. Com-
paring SJ-DMC results with those obtained from DEEPQMC,
one concludes that combining the VMC method with expres-
sive deep-learning ansatzes greatly increases its accuracy, sur-
passing SJ-DMC on eleven out of twelve reactions. The ac-
curacy advantage of DEEPQMC’s PauliNet2, FermiNet, and
DeepErwin ansatzes is similarly clear when comparing their
respective reaction energy mean absolute deviations (MADs)
of 2.4 mEh and 2.3 mEh, and 1.5 mEh to the 7.6 mEh of SJ-
DMC. As a final comparison, Figure 8 also shows the reaction
energy differences obtained from a complete basis set extrap-
olated, all-electron CCSD(T). Not surprisingly, CCSD(T) per-
forms outstandingly on these small, single reference systems
in equilibrium geometry, achieving a MAD of 3.4 mEh, and
chemical accuracy (less than 1 kcal/mol or 1.6 mEh error) on
four reactions. In comparison, the MAD value of PauliNet2
for this exemplary study with DEEPQMC is found to be be-
low that of CCSD(T), and chemical accuracy is achieved on
seven out of twelve reactions.

B. Transition metal oxides

The effects of utilizing pseudopotentials in variational opti-
mization of deep-learning molecular wave function are evalu-
ated on a series of four first-row transition metal oxides. The
bond lengths of the ScO, TiO, VO, and CrO molecules are
taken from the experimental results of Annaberdieyev et al.61.
The latest ccECP pseudopotentials61 are applied to the transi-
tion metal atoms only, replacing neon-like cores of 10 elec-
trons. Although replacing argon cores (18 electrons) with
pseudopotentials would result in even larger computational
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FIG. 7. Total energy deviations for small molecules of H, C, O, N, and F atoms. The presented molecules participate in the reactions
investigated by Nemec57. Reference energies are taken from the review of O’Neill60, while SJ VMC and SJ DMC results are taken from the
work of Nemec57. Results for the hydrogen molecule are omitted, as it is described nearly exactly by all depicted methods. Error bars denote
the sampling error as estimated according to (35).

savings, this is avoided as the third shell electrons are known
to play a non-negligible role in the bond formation of tran-
sition metal atoms62. Apart from the introduction of pseu-
dopotentials, the ansatz employed on small molecule reactions
(Section VIII A) is utilized here without further modifications.

Comparing the technical details of pseudopotential calcula-
tions to all-electron ones, the advantage of the former is clear.
Due to the exclusion of the fastest moving core electrons, the
length of the electron position updates is sixfold increased,
and higher accuracy is achieved in a given number of train-
ing steps, at about half of the computational cost. Next, the
dissociation energies of the four transition metal oxides are
estimated. The dissociation energy for transition metal X is
defined as

∆EXO
d = EX +EO −EXO , (37)

where EO = −75.0631(1)Ha is the result of an all-electron
calculation with the same hyperparameters. Figure 9 com-
pares the obtained dissociation energies to experimental
values63, and some other accurate computational methods
like CCSD(T)61, FermiNet16, auxiliary field quantum Monte
Carlo (AFQMC), semi-stochastic heat batch configuration in-
teraction (SHCI), and density matrix renormalization group
(DMRG)64. Apart from the TiO case, the accuracy of DEEP-
QMC with pseudopotentials is comparable to other theoret-
ical methods, such as CCSD(T) or AFQMC. The fact that
the dissociation energy estimates with DEEPQMC are sys-
tematically lower than the experimental results, indicates that
the single atoms are described more accurately than the oxide
molecules. This can be counteracted by increasing the expres-
siveness of the ansatz and investing more compute. Note that
results obtained with FermiNet16 utilized a larger ansatz and
trained for about ten times more training iterations than done
in this study.

IX. SUMMARY AND CONCLUSIONS

We have presented the DEEPQMC program package – a
general variational quantum Monte Carlo framework for op-
timizing deep-learning molecular wave functions. The im-
plementation focuses on modularity, facilitating rapid devel-
opment of new ansatzes, and provides maximal freedom in
choosing the specifics of the variational training setup. The
ansatz shipped with DEEPQMC attempts to unify most of the
currently existing deep-learning molecular wave functions,
while remaining easy to extend as new models emerge. To
reduce the computational complexity associated with heavy
nuclei, some popular precomputed pseudopotentials are also
implemented.

Using the framework provided by DEEPQMC, the most im-
portant practical aspects of variational optimization of deep-
learning molecular wave functions are discussed. The impor-
tance of a proper gradient estimator along with robust gra-
dient clipping is highlighted. For consistent ansatz initial-
ization, supervised pretraining to HF wave functions is sug-
gested. The advantages of using the second-order KFAC opti-
mizer are demonstrated, along with a rationalization of its ef-
fectiveness. The theoretical convergence of the Markov Chain
Monte Carlo sampling error is verified, and MALA is shown
to be more effective in obtaining decorrelated samples than
the widely utilized Random Walk MCMC algorithm. The em-
pirical scaling of the method’s computational cost is found to
be more favorable than the most popular post-HF approaches,
while its large prefactor is identified as an obstacle on the path
to wider adoption.

The black-box application of the program package is
demonstrated in two significantly different settings. The elec-
tronic reaction energies of 12 small molecule reactions are
computed with a mean absolute deviation of 1.5 mEh, and
compared to the 3.4 mEh achieved by CCSD(T) and 7.6 mEh
achieved by DMC with SJ ansatzes. Using the same ansatz hy-
perparameters, dissociation energies are computed for a series
of transition metal monoxides, utilizing the latest ccECP61
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FIG. 8. Reaction energy deviations for the reactions involving
small molecules of H, C, O, N, and F atoms. Reference reac-
tion energies are computed from the electronic energies reviewed by
O’Neill60, SJ-DMC results are obtained from Nemec57, while com-
plete basis set extrapolated CCSD(T) values are calculated in house
using PySCF36. The energies for PauliNet2, FermiNet and DeepEr-
win are obtained with the DEEPQMC program package. The range
of ±1 kcal/mol deviation (often referred to as chemical accuracy) is
highlighted with dashed lines.

pseudopotential. Improved training characteristics compared
to all-electron calculations highlight the benefit of employing
pseudopotentials. The accuracies of the predicted dissocia-
tion energies are on par with or exceed those of some other
recently popularized methods such as auxiliary field quantum
Monte Carlo, or density matrix renormalization group.

To conclude, the presented method shows great promise to
become an easy-to-use, general, black-box method accurately
describing the molecular electronic structure. Especially en-
couraging is the favorable scaling of computational require-
ments with increasing system size. It is easy to envision that
after further development reducing the large prefactor of the
computational costs, the DEEPQMC package will prove valu-
able to the wider quantum chemistry community.
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FIG. 9. Dissociation energy of transition metal oxides calculated
using different methods. DEEPQMC+ECP result was obtained us-
ing 55000 training steps and 5000 evaluation steps. The results for
FermiNet+ECP are taken from Li et al.16, where they used 10 times
more steps and consequently achieve higher accuracy. Other results
are from the references62,64.
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FIG. 10. Scaling of the compute time of the non-local part of the
ccECP pseudopotential. The evaluation of the second term of Eq.
(11) on a single NVIDIA GeForce RTX 3090 GPU. An exponential
fit gives a scaling exponent of 1.19±0.04 with the number of valence
(explicitly treated) electrons. The pseudopotential uses a Neon core
for elements up to Zn and a larger core for heavier atoms.

Appendix A: Additional scaling experiments

1. Pseudopotentials

Figure 10 shows the scaling of the run time of the non-local
pseudopotential evaluation (second term in (12)) on the third
and fourth-row atoms. This term dominates the total compu-
tational overhead of using pseudopotentials overwhelmingly.
From the 5 nested summations of (12), only the sum over the
valence electrons scales with the number of electrons, hinting
at an approximate linear scaling with system size. Looking at
Figure 10, the obtained empirical scaling of N1.19 is in good
agreement with expectations. The sudden jump in run time
from 20 to 21 electrons is caused by the reduction of valence
electrons, as the utilized ccECP pseudopotentials use a larger
core for 4p elements than for 3d ones.

2. Memory requirement

For all investigated applications, the memory requirement
bottleneck is presented by the computation of the Laplacian
of the wave function, ∑3N

i
∂ 2

∂ 2ri
ψθ(r). In this step, one obtains

second derivatives of the wave function with respect to the
electron coordinates. We obtain the derivatives of the wave
function by applying automatic differentiation in backward-
forward mode. While the gradient ∇rψθ is obtained in one
backward pass for all coordinates, the diagonal of the Hessian
( ∂ 2ψθ

∂ 2ri
) requires an additional 3N forward mode differentia-

tions to compute, one for each electron coordinate. Due to
the flexible function transformations of JAX, both the serial
and parallel execution of the 3N forward mode differentiation
passes can be implemented in a few lines of code, with the
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FIG. 11. Comparing the memory requirements and run times of
the serial and parallel Laplacian computations. Data is obtained
by evaluating the Laplacian of an untrained DEEPQMC ansatz with
respect to all electron coordinates. The parallel implementation com-
putes all diagonal elements of the Hessian at once, while the serial
version computes one entry at a time. The number of diagonal Hes-
sian entries scales linearly with the number of electrons. Run times
measured on a single Nvidia GTX 1080 Ti GPU.

two implementations presumably differing in how they trade
computational efficiency for memory requirement.

To decide between the serial and parallel approach to the
Laplacian computation, benchmark calculations on a series of
atoms with increasing nuclear charges are performed. The
obtained relative memory requirements of the parallel and se-
rial computations are presented on the left vertical axis of
Figure 11. The observed linear scaling of the relative mem-
ory requirement between parallel and serial evaluations can
be understood by considering that the parallel implementation
holds data for all 3N backward passes in memory, while the
serial approach stores data for a single pass at a time. How-
ever, the prefactor of the scaling curve is significantly less than
three, which indicates that JAX performs some optimizations
on the parallel code that reduce the naive 3N memory require-
ment multiplier. Considering run times of the two versions
(lower panel of 11) it is found that the relative timings of the
serial implementation over the parallel implementation do not
scale with the system size. In fact, the ratio of run times be-
tween the serial and parallel implementations appears to con-
verge around 1.5. Taking the above observations into account,
the serial implementation of the Laplacian evaluation is cho-
sen, due to its favorable scaling memory requirements which
outweigh the slight, non-scaling run time edge of the parallel
implementation.
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# Optimize the default ansatz for H2O using decorrelated Langevin Sampling and
# a reduced KFAC norm constraint
deepqmc hamil/mol=H2O task/sampler=decorr_langevin task.opt.norm_constraint=0.0005

# Now use a FermiNet ansatz along with its default hyperparameters
deepqmc ansatz=ferminet task=train_ferminet hamil/mol=H2O hydra.run.dir=fn

# Evaluate the previously trained ansatz using 10k inference steps
deepqmc task=evaluate task.restdir=fn +task.steps=10000

FIG. 12. Example usage of the DEEPQMC program package through its command line interface.

Appendix B: Usage of DeepQMC

In this section, we provide a few minimal examples of the
usage of the DEEPQMC command line interface. The inter-
face is based on HYDRA, which provides a modular way to
configure and execute complex jobs. DEEPQMC implements
a wide variety of configuration options for the wave function

ansatz as well as the hyperparameters of training and evalua-
tion. For ease of use, the package includes predefined configu-
ration files, which can be augmented using the command line
or extended with custom configuration files. For a thorough
tutorial and API documentation the reader is referred to the
DEEPQMC documentation. For examples of typical DEEP-
QMC commands see Figure 12.

https://deepqmc.github.io/
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