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Practical density functional theory (DFT) owes its success to the groundbreaking work of Kohn and Sham that intro-

duced the exact calculation of the non-interacting kinetic energy of the electrons using an auxiliary mean-field system.

However, the full power of DFT will not be unleashed until the exact relationship between the electron density and the

non-interacting kinetic energy is found. Various attempts have been made to approximate this functional, similar to the

exchange–correlation functional, with much less success due to the larger contribution of kinetic energy and its more

non-local nature. In this work we propose a new and efficient regularization method to train density functionals based

on deep neural networks, with particular interest in the kinetic-energy functional. The method is tested on (effectively)

one-dimensional systems, including the hydrogen chain, non-interacting electrons, and atoms of the first two periods,

with excellent results. For the atomic systems, the generalizability of the regularization method is demonstrated by

training also an exchange–correlation functional, and the contrasting nature of the two functionals is discussed from a

machine-learning perspective.

I. INTRODUCTION

Density functional theory (DFT) has become an essential

tool of every computational chemist and condensed-matter

physicist thanks to its ability to accurately predict the elec-

tronic properties of molecules1 and materials2,3 at an accessi-

ble cost. DFT is a quantum-mechanical approach that pro-

vides a practical and efficient way to obtain the electronic

structure of molecules, solids, and surfaces.

There are two terms to approximate in DFT as formulated

by Hohenberg and Kohn 4 (HK): the kinetic energy and the

exchange–correlation (XC) energy. In 1965, Kohn and Sham5

(KS) proposed a way to avoid drastically approximating the

kinetic energy by introducing a set of one-electron orbitals

that allow for exact calculation of the non-interacting kinetic

energy, and including the small difference to the exact kinetic

energy in the XC term. As a result, only the XC functional re-

mains to be approximated. Despite its crucial role in capturing

the chemistry of molecules and materials, crude approxima-

tions of the XC functional are often sufficient as it typically

accounts for a small fraction of the total energy6. The core

principle of DFT is the fact that only the electron density, a

3-dimensional function, is required to fully describe the elec-

tronic structure and energetics of a system. While KS-DFT is

extremely useful, it deviates from this fundamental principle

by requiring the use of a set of KS orbitals.

While the development of newer and more accurate XC

functionals has received a wealth of attention, the same level

of focus has not been directed towards kinetic-energy func-

tional (KEF), which enables the orbital-free DFT (OF-DFT).

The reason for this could simply be pragmatic, as KS-DFT
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provides the exact non-interacting kinetic energy, together

with the increasing difficulty of producing accurate function-

als given its non-local nature and its large contribution to the

total electron energy. Nonetheless, the lack of access to pre-

cise non-interacting KEF limits our ability to fully utilize the

computational advantages of HK-DFT.

The non-interacting KEF can be conveniently and ex-

actly partitioned into two components7,8: the von Weizsäcker

and Pauli functional. The former is the only contribution

for fermionic systems described with a single orbital or for

bosonic systems, while the latter embodies the effects of the

Pauli principle (antisymmetry)9,10. Although finding a suit-

able approximation of the Pauli functional has proven to be a

formidable task, some of its exact properties can be derived,

such as its positiveness and scaling conditions10. Many at-

tempts have been made to produce accurate Pauli function-

als, from semi-local approximations that do not usually yield

accurate results, certainly not without incorporating at least

the Laplacian of the density11,12, to more sophisticated non-

local functionals13–16. The former are defined in real space

and fail to reproduce the Lindhard function and the latter are

defined in reciprocal space, which complicates their use for

finite systems16.

Machine learning (ML) is an excellent tool for unravel-

ling complex mappings between a set of inputs and outputs

that are otherwise difficult to formulate theoretically. As a

result it has permeated almost every branch of science17–20.

Electronic structure calculations have benefited from this

development—for instance variational quantum Monte Carlo

from more flexible ansatzes21–23 and DFT in form of ML XC

functionals24–26.

One path to improve the density functionals is to make

use of more complex analytical forms satisfying more ex-

act constraints27 and climbing the Jacob’s ladder28, but there

has been also criticism that some of the more recent func-
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tionals are biased towards computing correct energies, rather

than producing both correct energies and densities29. ML to-

gether with large amounts of electron densities and energies

may help in the search of more accurate and unbiased density

functionals. The pioneering work in this field comes from J.

C. Snyder et al.30 who, for the first time, proposed to learn a

density functional —the KEF for a set of non-interacting elec-

trons. One of the main conclusions of that work was that it is

not possible to only train very flexible functionals by match-

ing the energies to some reference data, but also its functional

derivative must be regularized in order to obtain a functional

that is applicable in a self-consistent calculation. Since this

work, several regularization methods have been developed,

such as the use of the KS equations as regularizers, from L.

Li et al.31, or minimizing the second-order change of the en-

ergy from a single SCF step from J. Kirkpatrick et al.25, both

of which have been applied to learning the XC functional.

In this work we propose a new regularization method fo-

cused on the training of the KEF which is derived from the

variational principle, imposing that the electron energy func-

tional has a minimum at the reference density. The paper is

organized as follows. Section II presents a short introduc-

tion to DFT with a derivation of the minimum condition for

the energy functional needed in our regularization. We then

introduce the gradient regularization, after discussing previ-

ous methods, arguing for the need of this new form. In Sec-

tion III we evaluate the effectiveness of gradient regularization

by training the KEF for three (effective) 1D systems, namely

the hydrogen chain, non-interacting electrons, and atoms. We

demonstrate its broad applicability by using it to train the XC

functional for a group of atoms and comparing the training

methodologies for both the KEF and XC functional. Finally

Section IV summarizes the results and presents future per-

spectives in density-functional learning.

II. THEORY

A. Density functional theory

The ground-state electronic energy of an N-electron system

in a local external potential vext(r) is a unique functional of

the electron density4. In terms of spin densities (nσ , σ =α,β ,

n = ∑σ nσ ) the total energy is computed as

E[nα ,nβ ] = Ts[n
α ,nβ ]+

∫

vext(r)n(r)dr+J[n]+Exc[n
α ,nβ ]

(1)

where Ts is the kinetic energy of the non-interacting system, J

is the classical Coulomb interaction, and Exc is the XC energy.

The ground-state energy is obtained by minimizing the energy

over all possible N-representable densities. In KS-DFT, Ts can

be exactly computed from the orbitals of the non-interacting

system rather than approximated from the density, while Exc

is always approximated,

Ts[n
α ,nβ ] =−1

2
∑
iσ

nσ
i 〈ψσ

i |∇2|ψσ
i 〉 (2)

where ψσ
i are the KS orbitals and ni the occupation numbers

(∑i ni = N). While computing Ts directly from the density has

a much lower computational cost, existing approximations are

too rudimentary to be used for most chemical systems.

In OF-DFT each spin component of the density is expressed

in terms of a single bosonic orbital—OF orbital—occupied

by Nσ electrons, and the KEF has to be approximated, typ-

ically as the sum of the bosonic kinetic energy—the von

Weizsäcker functional—and the Pauli energy which accounts

for the fermionic effects:

Ts[n
α ,nβ ] = TW [nα ,nβ ]+Tp[n

α ,nβ ]

=
1

8
∑
σ

∫ |∇nσ (r)|2
nσ (r)

+Tp[n
α ,nβ ] (3)

Note that the von Weizsäcker functional and Eq. (2) become

the same when evaluated for systems with up to one electron

per spin channel, and the exact Pauli functional evaluates to

zero in such case. The minimization of the electronic energy

over all N-representable densities can be performed with the

Lagrange-multipliers method,

L[nα ,nβ ] = E[nα ,nβ ]−∑
σ

µσ

(

∫

nσ (r)dr−Nσ

)

= E[nα ,nβ ]−∑
iσ

εσ
i (〈ψσ

i |ψσ
i 〉−1) (4)

where µ is the so-called chemical potential and εσ
i are the

orbital energies. The functional derivative of L with respect to

the orbital ψσ
j is:

|gσ
j 〉=

δL

δ |ψσ
j 〉

= 2

[

−1

2
∇2 + vσ

eff − εσ
j

]

|ψσ
j 〉 (5)

The minimum condition requires the gradient of L to be zero,

yielding the regular KS equations:

δL

δ |ψσ
j 〉

= 0 ⇒
[

−1

2
∇2 + vσ

eff

]

|ψσ
j 〉= εσ

j |ψσ
j 〉 (6)

vσ
eff[n

α ,nβ ] =

{

vext + vH + vσ
xc KS-DFT

vext + vH + vσ
xc + vσ

p OF-DFT
(7)

with vH [n], vxc[n
α ,nβ ] and vp[n

α ,nβ ] the Hartree, XC and

Pauli potentials, the latter only present in OF-DFT. The so-

lution to this set of equations is usually found in a self-

consistent-field (SCF) fashion or by direct minimization32–34,

especially in the OF case.

The functional derivatives of the energy functionals with

respect to the density can be easily computed through auto-

matic differentiation31, currently implemented in every major

deep-learning package. Throughout the work, XC and Pauli

potentials will be computed through the automatic differenti-

ation provided in PyTorch35 .

B. Learning density functionals

In the past decade, several works have been devoted to the

task of machine-learning density functionals24–26,30,31,36–41,
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especially the XC functional. It became clear early on30 that

training a density functional by just matching the energies for

the reference densities produced functionals which are unus-

able in actual SCF calculations. The reason for this is that

when training only by energy, the functional has little chance

of learning the potential, i.e. the functional derivative, so the

minimum condition expressed in equation Eq. (5) is not nec-

essarily fulfilled for the reference ground-state density.

Li. et al.31 proposed to use the KS equations themselves as

regularizers, matching the converged energies and densities

from an SCF calculation to the reference ones. The regular-

ization comes from the fact that the backward pass traverses

the entire SCF calculation and that the losses are computed

from converged quantities. The main drawback of the method

is that it requires a full SCF calculation for each sample of the

training set every epoch, which becomes extremely expensive

for the large datasets that are needed for realistic functional

training.

Kirkpatrick et al.25 avoided this problem for training their

DM21 XC functional by minimizing the second-order change

of the energy from a single SCF step from the reference den-

sity. This forces the functional to have a stationary point close

to the reference density. While this method has been proven

to be highly efficient, it cannot be applied in the OF case be-

cause it requires the knowledge of reference virtual orbitals,

which are unavailable for the OF Hamiltonian. Nonetheless,

the essential implication is that the regularization merely has

to induce the reference densities to be the energy-functional

minima.

Building upon this concept, we propose utilizing directly

the gradient norm in Eq. (5) as a regularizer in our work. In a

conventional DFT calculation, this gradient directs the search

for the orbitals (density) that minimize the electronic energy.

When training a functional, this gradient will instead steer the

search for the Hamiltonian whose eigenfunctions are the ref-

erence orbitals (density), by means of optimizing the Pauli or

XC functional. Consequently, the overall loss function will be

a combination of an energy and gradient regularization terms:

L =
√

E[(E −E∗)2/N]+λE[〈g|g〉] (8)

where E is the total energy, computed from Eq. (1) using

the ML functional, E∗ is the reference total energy, and |g〉
is the gradient from Eq. (5) with the effective potential, vσ

eff,

computed on the reference orbitals. The orbital energy (εσ
i )

therein is just the expectation value of the Fock matrix calcu-

lated with the ML functional making use of the reference or-

bitals. The gradient norm becomes the variance of the expec-

tation value of the orbital energy (〈g|g〉 ∝ 〈F2〉− 〈F〉2) com-

puted on the reference orbital. This term is only zero when

the reference orbital is an eigenfunction of the Fock opera-

tor computed with the ML functional. The specific details on

how to compute the gradient regularization term and how is it

related to the variance of the expectation value of the orbital

energy are provided in appedixes A and B. Finally, λ con-

trols the effect of the regularization in the training process.

This regularization is applicable to train the KEF or XC func-

tional both in OF-DFT and KS-DFT. The regularization term

is computed, for every sample, as the sum of the norm of the

gradients on each orbital,

〈g|g〉= ∑
iσ

〈gσ
i |gσ

i 〉 (9)

These gradients can be projected onto the basis-set elements

in which ψi is expressed ({φa}):

ψi(r) = ∑
j

ci jφ j(r) (10)

〈φa|gσ
i 〉= ∑

j

ci j

[

Fσ
a j − εσ

i Sa j

]

(11)

where F and S are the Fock and overlap matrices, respectively.

Another alternative to the regularization term that builds

upon the same idea is the use of the DIIS error vector42, hence

enforcing the density to commute with the Fock operator built

from the ML functional. This possibility is briefly discussed

in the appendix C.

III. RESULTS

We demonstrate the effectiveness of the new regularization

approach on a set of representative systems, for which we train

the KEF. These systems include linear hydrogen chains in 1D,

non-interacting electrons in 1D Gaussian external potentials,

and free atoms in 3D. Furthermore, on free atoms, we also

compare learning the Pauli and XC functionals.

In order to learn the Pauli functional, we create a training

set consisting of target energies and OF orbitals that generate

the desired density. To obtain the target energies and densities,

we utilize KS-DFT, which enables us to compute the exact

kinetic energy of the non-interacting system. The reference

OF orbitals are determined by projecting the square root of

the density onto the basis-set elements and solving a set of

linear equations given by

〈φa|
√

n〉= ∑
i

ci〈φa|φi〉= ∑
i

ciSai (12)

To learn the XC functional, we use reference densities ob-

tained from another functional. According to Kirkpatrick et

al.25, the energy computed from a density functional is rel-

atively insensitive to minor changes in the densities, that is,

the density error on the tested functionals is low. Hence, den-

sities converged with different functionals yield similar elec-

tron energies. On the other hand, energy driven error appears

to be quite large, as the energy calculated from a single den-

sity varies significantly depending on the density functional.

For more details, we refer the reader to their work.

The ML functionals, whether KEF or XC functional, are

constructed as integrals over the entire space of an energy den-

sity,

F [nα ,nβ ] =
∫

fθ
(

z[nα ,nβ ](r)
)

n(r)dr (13)

A multilayer perceptron (MLP), fθ , is used to represent the

energy density, and is fed with features z computed from the
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electron density. SiLU activations43 are employed between

the hidden layers, while the output activation is a softplus

function. In all cases the input features are heavily inspired

by those from Li. et al.31, and are detailed for each individual

system type below.

A. 1D hydrogen chains

The 1D hydrogen chain consists on a set of equidistant hy-

drogen atoms aligned along one axis. The external potential

is modeled by the exponential Coulomb interaction44:

vext(x) =−Zvexp(x), vexp(x) = Aexp(−κ|x|) (14)

with an unpolarized LDA exchange from Ref.45 and corre-

lation term from Ref.44. The classical Coulomb interaction

takes the form:

J[n] =
1

2

∫∫

n(x)n(x′)vexp(x− x′)dxdx′ (15)

vH(x) =
δJ

δn
=

∫

n(x′)vexp(x− x′)dx′ (16)

The features z fed to the MLP representing the non-local

Pauli functional are:

z1 = log(n(x)+10−4) (17)

zi = log(G[n](x;αi)+10−4), i > 1 (18)

where G is a global convolution of the density with a Gaussian

kernel:

G[n](x;α) =
1√

2πα

∫ ∞

−∞
n(x′)exp

(

− (x− x′)2

2α

)

dx′ (19)

The degree of non-locality of the kernel width is governed by

the α parameter. Larger values of α result in more non-local

features.

The training set consists of KS-DFT densities and energies

computed with the XC terms referenced above, for equidistant

Hn chains (n = 2, 4, 6, 8). An L-BFGS46 optimizer is used in

the training process. The interatomic distances included in the

training set together with a comprehensive description of the

training protocol are reported in the SI.

In the following sections, we investigate how the perfor-

mance of the trained Pauli functional is influenced by the

number of training data, the number of convolutions, and the

inclusion of non-local features. In all cases we compare with

our reference KS-DFT calculations.

1. Number of convolutions and degree of non-locality

The non-interacting kinetic energy is known for its highly

non-local nature14. While even the LDA approximation of

the XC functional is able to produce accurate densities, semi-

local approximations of the kinetic energy often struggle to

reproduce accurate energies and densities. In our model, we

account for non-local effects in the Pauli functional through

global convolutions that compute non-local features. We aim

to determine the minimum amount of non-locality required by

the functional to achieve accuracy by training different models

with increasing numbers of global features and larger kernel

widths, which introduce more non-local information into the

model. The relationship between non-locality of features and

accuracy is evident in Fig. 1a. Further insight into the impact

of non-local effects can be obtained by examining the errors

in the potential energy curve of H8, as shown in Fig. 2. When

max(α)< 3a−2
0 , errors below chemical accuracy are rare. For

larger convolutional kernels, accuracy improves significantly

in the dissociation region, but larger errors are still present for

smaller R values. Non-locality has a more pronounced effect

at lower R values, with more compressed and correlated den-

sities, and the remaining accuracy is achieved through wider

global convolutions.

The increase in accuracy can be attributed to the inclusion

of non-locality in the global features, as depicted in Fig. 1b. A

series of global functionals are trained with an equal α range

α ∈ [0.1,10.0], while increasing the number of non-local fea-

tures. The results indicate that the functional can attain chem-

ical accuracy on all test systems after four or six global fea-

tures. This finding suggests that the improved accuracy is

mainly due to the range of non-local features rather than their

number.

Note that a simple LDA approximation for the KEF is not

flexible enough to be simultaneously zero for H2, where the

vW is exact, and different from zero for the chains with more

than two electrons.

2. Amount of training data

Ten models were trained on an increasing amount of data,

from one geometry per chain to nine of them, to determine

how the training-set size affects the validation performance.

The effect of the training-set size on the validation error for

several hydrogen chains is presented in Fig. 1c. In all cases,

the models reached chemical accuracy for six training points,

after which the error stabilised. This behaviour is mainly due

to the fact that the model no longer has to extrapolate out of

the range of R values seen in the training set (the model is still

validated on unseen values of R). This demonstrates a differ-

ence between the XC functional and non-interacting KEF. Li

et al.31 showed in their work that about two training points for

each H2 and H4 are needed to accurately recover the poten-

tial energy curve, demonstrating great generalisation power.

In contrast, training the non-interacting KEF is expected to

require much more data.

The potential energy curves of the hydrogen chains are pre-

sented in Fig. 3 together with some selected densities, close

to their respective minima and tending to dissociation. Both

energies and densities have been obtained via an SCF calcula-

tion employing the trained functional.
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FIG. 1. Validation errors for the hydrogen chains with respect to (a) the maximum width of the global convolution, (b) the number of global

features fed to the MLP, and (c) the number of training samples per hydrogen chain. The dots represent the median error of ten models and the

error bars the Q1 and Q3 errors, in a box-plot fashion. Chemical accuracy is shown with a dashed horizontal line. Pauli LDA results in (a) are

obtained for a model with no global features. (d) Sample of Gaussian kernels in Eq. (19) for different α values.
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FIG. 2. Energy errors along the H8 potential energy curve for mod-

els with increasing non-local features. R indicates the interatomic

distance between H atoms.

B. Non-interacting electrons

The next system is the one used by Snyder et al.30 in their

original work, which consists of a set of N non-interacting,

spinless electrons confined in a box, x∈ [0,1], feeling an exter-

nal potential expressed as the sum of three Gaussian functions,

generated by randomly sampling a ∈ [1,10], b ∈ [0.4,0.6] and

c ∈ [0.03,0.10]:

vext(x) =
3

∑
i=1

aexp

(

− (x−b)2

2c2

)

(20)

The Pauli functional is trained for different number of elec-

trons, N = 2, 3, 4, on a set of 100 random potentials. A fi-

nal model is trained on 400 random potentials with N ∈ [1,4].
These models are validated on a different set of 1000 external

potentials. The features fed to the MLP are:

z1 = n(x) (21)

zi = G[n](x;αi), i > 1 (22)

with the global convolution in Eq. (19).

We observed a more efficient training process by combin-

ing AdamW47 and L-BFGS46 optimizers. The former is used

at the beginning of the training process until a threshold loss

value is reached. We refer the reader to the SI for the technical

details of the training process.

The validation energy and density errors are presented in

Table I. The density error is computed as:

(∆n)2 =
∫ 1

0

(

n(x)−n′(x)
)2

dx (23)

where n(x) and n′(x) are the reference KS-DFT and OF-DFT

densities, respectively.

TABLE I. Validation errors on a set of 1000 randomly generated ex-

ternal potentials for converged OF-DFT calculations with the trained

Pauli functional. Energy errors in kcal/mol and density errors in a−1
0 .

N |∆E| |∆E|std |∆E|max ∆n ∆nstd ∆nmax

2 0.10 0.15 2.51 3.65×10−7 2.33−6 6.51×10−5

3 0.26 0.39 6.86 2.00×10−6 3.00−6 3.70×10−5

4 0.48 0.72 8.10 4.33×10−6 8.60−6 1.01×10−4

1—4 0.43 0.78 12.05 3.71×10−6 1.72−5 3.17×10−4

Note that the errors in Table I are computed with the con-

verged densities and energies from a regular SCF calculation

since the Pauli potential becomes a smooth function of the

density thanks to the gradient regularization. Fig. 4 shows the

converged densities for several randomly selected external po-

tentials with the number of electrons varying from 1 to 4. The

Pauli potentials, computed from the converged OF densities,

are presented in the bottom panels, showing a smooth behav-

ior along the x coordinate.
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FIG. 3. Potential energy curves of the hydrogen chains. Reference KS-DFT energies (black dots) and converged OF-DFT energies (red lines)

are shown. The insets show the KS-DFT density in black compared to the converged OF-DFT density. The top insets show the density close to

the minimum in the potential energy curve and bottom one the density for a geometry closer to dissociation. The x-axis of the inset represents

the x-coordinate in atomic units and the y-axis the electron density (n(x)).
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FIG. 4. Top panels: samples of KS densities (black solid lines) and the corresponding converged OF densities (red and green dashed lines) for

two randomly selected validation external potentials. Bottom panels: Pauli potentials for the converged densities.

C. Atoms

Finally, we validate our methodology for learning the KEF

and XC functional on the atoms from the first two periods

of the periodic table, extending the work from Ghasemi and

Kühne38 to a larger set of atoms and to the spin-polarized

DFT framework. Atoms can be treated as an effective one-

dimensional problem since only the radial part of the density

has to be solved:

n(r) = n(r)n(θ ,ϕ), n(θ ,ϕ) = 1 (24)

Since we are considering multiple spin states, we will uti-

lize the spin-polarized DFT in this scenario. The external

and Coulomb potentials48 are computed using the regular

Coulomb interactions between charged particles:

vext(r) =−Z

r
(25)

vH(r) = 4π

∫ ∞

0

n(r′)r′2

|r− r′| dr′

= 4π

[

1

r

∫ r

0
n(r′)r′2dr′+

∫ ∞

r
n(r′)r′dr′

]

(26)

Pauli and XC energies are computed as:

EF [n
α ,nβ ] = 4π

∫ ∞

0
f [nα ,nβ ](r)n(r)r2dr (27)

where f [nα ,nβ ] is the Pauli or XC energy density.

For a spherically symmetric external potential the

Schrödinger equation can be written as a one-dimensional

equation,
[

−1

2

d2

dr2
+

l(l +1)

2r2
+ vσ (r)

]

uσ (r) = εσ uσ (r) (28)

with ψσ (r) = uσ (r)/r, l the orbital angular momentum, and

vσ (r) = vH(r)+vσ
xc(r)+[vσ

P (r)], the latter potential term only
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present in OF-DFT. In OF-DFT case no centrifugal term is

considered, that is l = 0, since this is a kinetic-energy contri-

bution which is described by the Pauli functional. The features

fed to the MLP representing the functional energy density are:

z1 = log(nα(r)+10−4) (29)

z2 = log(nβ (r)+10−4) (30)

ziα = log(G[nα ](r;αiα )+10−4) (31)

ziβ
= log(G[nβ ](r;αiβ

)+10−4) (32)

where the convolution widths αi are the same for α and β
densities and the convolution is computed as

G[n](r;α) =
1√

2πα

∫ ∞

0
n(r′)exp

(

− (r− r′)2

2α

)

dr′ (33)

We demand that the XC energy density is always negative, so

the output of the MLP is multiplied by −1 in this case. In

order to make the energy density spin-symmetric, the same

MLP is run twice and averaged for both spin orderings.

The training proceeds is explained in section III B where

AdamW and L-BFGS optimizers are combined; once the loss

reaches a certain threshold the optimizer is switched.

Similar to the previous test conducted on hydrogen chains,

we evaluate the accuracy of Pauli and XC functionals with

respect to the level of non-locality incorporated in the global

features. In both cases the training set will consist of ener-

gies and densities of the elements in the first two periods of

the periodic table. The reference energies and densities for

the Pauli functional are computed with UKS/LDA. To learn

the XC functional, the reference energies are computed with

UCCSD(T)/cc-pVTZ using PySCF49,50. UKS/LDA reference

densities are taken in this case, similar to how DM21 was

trained, leveraging the fact that the XC functionals are, in gen-

eral, little sensitive to the reference densities25.

The accuracy achieved by the Pauli and XC functionals

with respect to the level of non-locality incorporated in the

input features is compared in Fig. 5. While the XC func-

tional needs little non-locality, reaching an excellent accuracy

with only two narrow global convolutions, the Pauli func-

tional does not produce accurate results until large convolu-

tional widths are employed to construct the density features.

The learning curves presented in the bottom panel of Fig. 5

already show a difference between both functional learning,

where the Pauli functional needs a significantly larger amount

of epochs to reach similar loss values than the XC functional.

The regularization term is learned significantly faster for the

XC functional, suggesting a less intricate structure of the un-

derlying true functional, compared to the KEF.

The small amount of training data raises the question of

how much of this precision is actually physics learned by the

functional or pure overfitting. To answer this question we

compute the ionization energies of the atoms with our learned

functionals, since the cationic species were never seen in the

training process. In Table II the ionization energies are pre-

sented for each atom compared to the reference energy in

each case, i.e. KS-DFT/LDA energies to validate the Pauli

functional and UCCSD(T) energies to validate the XC func-

tional. These results present some clear overfitting in the case

10 1 100 101

max( i)

10 3

10 2

10 1

100

E 
(k

ca
l/m

ol
)

Pauli
XC

102 103 104

Epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

Lo
ss

AdamW

L-BFGS

Pauli
Energy loss
Regularization loss
XC
Energy loss
Regularization loss

FIG. 5. Comparison of the median errors of 10 training runs of the

Pauli and XC functionals for the atoms in the first two periods of the

periodic table against the amount of non-locality in the global fea-

tures. The black points represent the average values of the median

for all the atoms. Training loss curves for the largest model, together

with the energy and regularization contributions, for the Pauli func-

tional (black) and the XC functional (red).

of Pauli functional, where in most cases it is not even possi-

ble to converge the SCF calculation of the cation, and those

that converge present large energy differences. Although the

learned XC functional is much more robust with respect to

convergence, it also exhibits deviations from the actual ion-

ization energies.

To test how the training of the Pauli functional would pro-

ceed in a more realistic scenario with a larger amount of train-

ing data, we generate larger datasets of atoms with fractional

nuclear charges, under the external potential

vext(r) =−Z + τ

r
(34)

where τ is a random number between −0.1 and τmax. Four

datasets are generated with τmax = 0.0, 0.5, 1.0, and 1.5. The
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TABLE II. Ionization energies of the atomic species in kcal/mol. For the learned functionals the energy difference (in kcal/mol) with respect

to the reference ionization energy is presented.

Atom KS-DFT/LDA-PW92 OF-DFT/Trained τmax = 0.0 τmax = 0.5 τmax = 1.0 τmax = 1.5 CCSD(T)/cc-pVTZ KS-DFT/Trained

He 560.16 −0.02 −0.11 0.01 −0.01 −0.04 565.58 +6.21

Li 125.40 80.59 84.69 86.64 6.48 0.76 123.44 +25.24

Be 208.11 − −1382.45 116.92 −0.86 −2.96 214.11 +25.61

B 197.71 +106.53 122.69 10.11 −0.67 0.55 189.74 +41.73

C 271.25 +141.81 166.88 61.14 5.98 −0.22 257.92 +50.29

N 345.78 +186.73 239.37 55.26 − −0.95 333.21 +52.79

O 320.51 − 185.46 102.35 3.43 4.27 307.29 +50.58

F 416.47 +416.70 − 193.64 −1.80 −3.84 395.30 +58.68

Ne 511.53 +475.48 − 434.67 9.52 −1.57 491.41 +60.11

datasets contain a total number of 400 atoms with artificial nu-

clear charges, 40 samples per Z. The spin state is that for the

ground of state of the atom with atomic number Z. In Table II

the energy errors in the ionization energy are presented for

each atom. The two datasets with larger τmax provide much

more information for the functional to gain physical insight

about the true KEF. Note that these datasets do not necessar-

ily contain the neutral and cation species, yet the functional

becomes general enough as to accurately predict them.

IV. CONCLUSIONS

In this work we present a new method to regularize the

training of density functionals, derived from the variational

condition that the global energy functional presents a min-

ima for the ground electronic state density. In particular, the

gradient of the Lagrangian with respect to the density is em-

ployed to guide the search of the functional which fulfills the

minimum condition, making them applicable to regular SCF

calculations. This methodology is directly applicable to the

training of KEF and XC functional. This is a cheap regulariza-

tion technique compared to performing a full SCF calculation

for each of the training samples, and we anticipate that it can

have widespread applicability in realistic functional training

scenarios.

It is evident that forthcoming attempts to train the KEF will

heavily depend on the inclusion of non-local features, which

we have found to be more crucial than the number of global

features and even the size of the network. The KEF reveals

a more complex inner structure to learn, compared to the XC

functional, as can be extracted from the regularization learn-

ing curves for both functionals with equivalent ML models

and training schemes. Additionally, our findings reveal that

the KEF is highly susceptible to overfitting on small datasets,

as evidenced by its inability to accurately replicate the ioniza-

tion energy of atoms. In contrast, the XC functional, which

was solely trained on neutral atoms, displays remarkable ro-

bustness. Notably, all the SCF calculations converge to rea-

sonable energies for the XC, while the KEF exhibits a dis-

mal performance. Another instance where the KEF displays

less generality than the XC is demonstrated in the hydrogen

chain, where a greater number of training points was required

for the KEF to accurately recover the potential energy curve

compared to the XC case presented by Li et al. Therefore,

it is anticipated that the datasets used to train the KEF must

be substantially larger to enable the acquisition of sufficient

physical knowledge. Alternatively, additional regularization

techniques such as equipping the ML functional with exact

scaling properties could be also used.

Extending this regularization technique to 3D systems is a

straightforward process. The regularization term can be com-

puted using Eq. (11), expressed in terms of the basis elements

found within the Fock and overlap matrices. The dataset will

consist of electronic ground state energies and reference or-

bital coefficients. Lastly, it is essential to define a dedicated

model that can accurately represent the XC or KE functionals.

All these elements can then be integrated into a training work-

flow similar to the one employed for the DM21 functional.

V. SUPPLEMENTARY MATERIAL

Supplementary Material with detailed descriptions of the

training workflows is provided in the internet version.
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DATA AVAILABILITY

The datasets, training scripts and analysis scripts and model

weights are openly available in Zenodo (https://doi.org/
10.5281/zenodo.8116400).

The computer code used in this study is openly available in

Zenodo (https://doi.org/10.5281/zenodo.8116389).

Appendix A: Gradient regularization

In the following, the detailed steps to perform the training

process with our regularization scheme are provided:

1. Generate dataset → reference energies and orbital coef-

ficients such that the density matrix element:

Pab = ∑
i

nic
∗
iacib (A1)

with ni the occupation number of reference orbital ψi.

2. Initialize the ML model of the functional.

3. while training:

(a) Compute electronic energy for the current state of

the functional:

E = E[n] (A2)

with E[n] defined in (1) making use of the ML

functional.

(b) Compute the gradient norm from equation (5):

* Compute εi as the expectation value of the

Fock operator constructed with the ML func-

tional and the reference orbitals given by the

orbital coefficients (cia):

εi = ∑
a,b

c∗iacibFab (A3)

* Compute gradient vector |gi〉 with the orbital

energy obtained in the above step from Eq.

(5). This can be either computed on a grid

(specially for 1D systems) or expressed in

terms of a basis set as presented in Eq. (11).

(c) Loss contributions are computed from the results

of steps a) and b) and plugged into the total loss

(8).

(d) Backpropagate and update net parameters.

The training process continues until a sufficiently low error is

reached and no further improvement is found. Then the model

is validated on a test dataset.

Appendix B: Gradient norm and variance

The norm of the gradient expressed in Eq. (5) can be easily

related with the variance of an observable.

Indeed the norm of the vector in Eq. (5) is:

〈gi|gi〉= 4〈ψi|
[

f̂ − ε j

]2 |ψi〉 (B1)

= 4
[

〈ψi| f̂ 2|ψi〉−2εi〈ψi| f̂ |ψi〉+ ε2
i

]

(B2)

Since εi is computed as the expectation value of the Fock op-

erator for the orbital ψi (εi = 〈ψi| f̂ |ψi〉):

〈gi|gi〉= 4
[

〈ψi| f̂ 2|ψi〉−〈ψi| f̂ |ψi〉2
]

= 4var( f ) (B3)

The variance of the measurement will only be zero if the

orbital is an eigenfunction of the Fock operator. In the field

of machine learning density functional this term aims to guide

the search of the functional among those which build a Fock

operator with the proper eigenvectors, hence present the min-

imum in the correct density.

Appendix C: DIIS as regularization term

The use of DIIS error as regularization term looks for a

very similar condition than the gradient regularization. While

the former ensures that the density matrix commutes with

the Fock matrix (computed with the ML functional), the

latter enforces that the Fock matrix computed from the ML

functional has the correct eigensolutions (orbitals), which

build the target density.

The DIIS error vector is computed is the usual way42:

e= SPF −FPS (C1)

where S, P and F are the overlap, density and Fock matrices.

During the training process only the functional potential in F

changes, while S and P remain constant.

The regularization loss is just the square of the above vector.

We test this implementation training ten functionals for the

hydrogen chain, similar to what is presented in the main text.

The details of the training process correspond to the default

setup indicated in the SI

with only two differences: the L-BFGS optimizer is used

throughout the whole training process and the λ parameter on

the regularization term is switched to 10−4. We validate these

models on a different validation set. Figure C presents the

median energy error on the validation set for each hydrogen

chain, comparing DIIS and gradient regularization.

Both regularization terms yield functionals of very similar

accuracy for the systems considered, in accordance with the

fact the both terms aim for a similar objective.

Future work on more realistic 3D systems will be desirable

in order to determine whether either regularization term per-

forms better in terms of training efficiency or generalization

capabilities, for which we do not see much difference in this

toy system.
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FIG. 6. Validation errors for the hydrogen chains for the DIIS and
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models and the error bars the Q1 and Q3 errors.
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