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Computing accurate yet efficient approximations to the solutions of the electronic14

Schrödinger equation has been a paramount challenge of computational chemistry for15

decades. Quantum Monte Carlo methods are a promising avenue of development as their16

core algorithm exhibits a number of favorable properties: it is highly parallel, and scales fa-17

vorably with the considered system size, with an accuracy that is limited only by the choice18

of the wave function ansatz. The recently introduced machine-learned parametrizations of19

quantum Monte Carlo ansatzes rely on the efficiency of neural networks as universal func-20

tion approximators to achieve state of the art accuracy on a variety of molecular systems.21

With interest in the field growing rapidly, there is a clear need for easy to use, modular, and22

extendable software libraries facilitating the development and adoption of this new class23

of methods. In this contribution, the DEEPQMC program package is introduced, in an24

attempt to provide a common framework for future investigations by unifying many of the25

currently available deep-learning quantum Monte Carlo architectures. Furthermore, the26

manuscript provides a brief introduction to the methodology of variational quantum Monte27

Carlo in real space, highlights some technical challenges of optimizing neural network28

wave functions, and presents example black-box applications of the program package. We29

thereby intend to make this novel field accessible to a broader class of practitioners both30

from the quantum chemistry as well as the machine learning communities.31

a)Z. Schätzle and P. B. Szabó contributed equally to this work.
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I. INTRODUCTION32

Recently, the application of machine learning to a wide range of problems from the natural sci-33

ences has proven to be highly successful. Computational chemistry is a field of particular activity:34

machine learning force fields model complicated quantum mechanical effects at the resolution of35

atoms, while machine learned functionals elevate density functional theory to unprecedented accu-36

racy 1–3. These approaches utilize supervised training to learn from accurate quantum mechanical37

reference calculations, and make predictions for unseen configurations. While this results in fast38

yet accurate approximations to the quantum many-body problem, it inherently depends on high39

quality training data, which represents a major bottleneck of these methods.40

An orthogonal way to incorporate machine learning into computational chemistry is its appli-41

cation to improve ab-initio calculations. Notably, over the course of the last years a new family of42

deep-learning quantum Monte Carlo (deep QMC) methods has developed, incorporating advance-43

ments from the field of machine learning 4. Common to the deep QMC methods is the utilization44

of neural networks to parametrize highly expressive ansatzes, efficiently approximating the so-45

lutions of the time-independent electronic Schrödinger equation, thereby providing a complete46

description of the system’s electronic properties. Originating from spin lattices5, deep-learning47

ansatzes were soon applied to molecules in real-space6. With the development of PauliNet7 and48

FermiNet8, the accuracy of neural-network wave functions became the state of the art within vari-49

ational Monte Carlo. Subsequent works have further increased the accuracy of these ansatzes9–12,50

extended them to the simulation of excited states13 as well as periodic systems14,15, combined51

them with pseudo-potentials16, used them in the calculation of interatomic forces17, utilized them52

in diffusion Monte Carlo simulations18,19, and extended them to share parameters across multiple53

molecular geometries20–22 or distinct molecules23,24.54

Although the method of optimizing deep-learning wave function ansatzes using variational55

quantum Monte Carlo was developed only a few years ago, it already competes with some of the56

most accurate traditional quantum chemistry methods on molecules with up to ∼100 electrons.57

Exhibiting competitive scaling with the number of electrons, it has the potential to be extended to58

larger systems in the near future. Achieving this will no doubt require further method development59

as well as efficient implementations of the core algorithms, creating the need for open source60

libraries that facilitate experimentation and contribution from the community.61

Accompanying the above summarized research, various software libraries for variational op-62
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timization of deep-learning wave functions have been released25–28. While NETKET
25 provides63

a general implementation of variational optimization of machine learning wave functions mainly64

for lattice systems with recent extensions to continuous space, the research for molecular machine65

learning wave functions was carried out across various repositories and is lacking a unified frame-66

work. The presented DEEPQMC program package aims to provide a unified implementation of67

the developments in the field of deep-learning molecular wave functions. It intends to be easy to68

use out of the box, while allowing full control and flexibility over the ansatz and variational train-69

ing for advanced users. The library is designed to be modular, facilitating the rapid development70

and testing of individual components, and easing the implementation of new features. It makes use71

of the composable function transformations and just-in-time compilation provided by the JAX li-72

brary29 to express performant GPU accelerated algorithms using concise Python30 syntax. Neural73

network models are encapsulated in higher-level objects, using the haiku deep-learning library31.74

The project is open-source and distributed online under the MIT license26.75

II. THEORY76

A. The electronic structure problem77

In computational chemistry, molecular systems are often described by the non-relativistic78

molecular Hamiltonian using the Born–Oppenheimer approximation:79

Ĥ =
N

∑
i=1

(

−
1

2
∆ri

−
M

∑
I=1

ZI

|ri−RI |
+

i−1

∑
j=1

1
|ri−r j|

)

, (1)

where ri denotes the position of the ith electron, while ZI and RI are the charge and position of the80

Ith nucleus, respectively. To determine the electronic structure of these molecular systems, one81

must solve the associated time independent Schrödinger equation82

Ĥψ(x1, ...,xN) = Eψ(x1, ...,xN) , (2)

where xi = (ri,σi) comprise the positions of the electrons and their spin. A solution is an eigen-83

function of the Hamiltonian, the electronic wave function ψ , and its corresponding energy eigen-84

value E. With the exact wave function at hand, any observable electronic property of the system85

can in principle be computed, as the wave function gives a complete description of the system’s86

electronic state. Since electrons have half-integer spin, their wave functions must be antisymmetric87
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with respect to electron exchanges88

ψ(. . . ,xi, . . . ,x j, . . .) =

−ψ(. . . ,x j, . . . ,xi, . . .) .
(3)

While general wave functions are complex-valued, the solutions of the time independent Schrödinger89

equation can be chosen as real without loss of generality, due to the hermiticity of the molecular90

Hamiltonian. Therefore in all of the following discussions, as well as in the DEEPQMC library,91

only real valued wave functions are considered.92

B. Variational optimization93

Even with the aforementioned approximations, the electronic Schrödinger equation involving94

the molecular Hamiltonian can only be solved analytically for hydrogenic atoms – the special95

case of the two-body problem. This makes computational quantum chemistry a mainly numerical96

field, where different methods yield approximate solutions at varying trade-offs of accuracy and97

computational cost. The class of variational quantum chemistry methods phrases the solution of98

the Schrödinger equation as a minimization problem. The ground state of the Hamiltonian is99

approximated by optimizing the parameters θ of a trial wave function (ansatz) ψθ, to minimize100

the expectation value of the Hamiltonian101

θ
′ = argmin

θ

⟨Ĥ⟩ψθ
. (4)

This objective is rooted in the variational principle of quantum mechanics, which states that the102

ground state energy of the Hamiltonian is a lower bound for the energy expectation value of any103

wave function from the associated antisymmetric Hilbert space H−
104

E0 ≤ min
ψ

⟨Ĥ⟩ψ ψ ∈ H−. (5)

The variational methods can be categorized based on the means of calculating the expectation105

value ⟨·⟩, and choice of ansatz ψθ.106

The DEEPQMC program package implements VMC in real space (first quantization) with107

neural network wave functions. In VMC, expectation values are estimated through a stochastic108
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sampling of electron configurations109

⟨Ĥ⟩ψθ
=

⟨ψθ|Ĥ|ψθ⟩

⟨ψθ|ψθ⟩

=

∫

dr1, ...,drNψ∗
θ
(r1, ...,rN)Ĥψθ(r1, ...,rN)

∫

dr1, ...,drN |ψθ(r1, ...,rN)|2

=

∫

dr1, ...,drN |ψθ(r1, ...,rN)|
2Eloc[ψθ](r)

∫

dr1, ...,drN |ψθ(r1, ...,rN)|2

= Er∼|ψθ |2
[

Eloc[ψθ](r)
]

≈
1

n

n

∑
r∼|ψθ |2

Eloc[ψθ](r) .

(6)

Because the molecular Hamiltonian does not depend on the spin, it is possible to compute the110

energy using the spatial wave function ψ(r1, ...,rN), where fixed spins are assigned to the electrons111

and spin-up and spin-down electrons are treated as distinguishable32. The convention is to sort the112

electrons by spin and consider the first N↑ electrons to have spin-up and the remaining N↓=N−N↑
113

electrons to possess spin-down.114

In practice, a VMC simulation then consists of choosing an ansatz (see Section III), and opti-115

mizing it in an alternating scheme of sampling and parameter updates. The expectation value in116

(6) is approximated by sampling the probability density given by the square of the wave function117

(see Section V), followed by a parameter update using the gradient of the expectation value (see118

Section IV).119

C. Neural network wave functions120

Being exact in principle, the choice of the wave function ansatz is crucial for the efficiency121

of a VMC simulation. Recently, neural network parametrizations of real-space molecular wave122

functions were introduced by PauliNet7, and FermiNet8. They both rely on generalized Slater123

determinants, that augment the single particle orbitals of conventional Slater determinants with124

many-body correlation,125

ψθ(r1, ...,rN) = ∑pcp det[Ap(r)] , (7)
126

A
p
ik = φ

p
k (ri,{r↑},{r↓})×ϕ

p
k (ri) . (8)

Here, φ
p
k are many-body orbitals, and ϕ

p
k are single particle envelopes that ensure the correct127

asymptotic behavior of the wave function with increasing distance from the nuclei. The set no-128

tation {·} is to be understood as a permutation invariant dependence on the spin-up electrons r↑,129
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and spin-down electrons r↓, respectively. The ansatz may be a linear combination of multiple130

generalized Slater determinants, which are distinguished with the p index. The form of φ
p
k in131

(8) is closely related to the backflow transformation33, which introduces quasi-particles to obtain132

many-body orbital functions. The key observation motivating this augmentation is that the anti-133

symmetry of Slater determinants constructed from many-body orbitals is preserved as long as the134

orbital functions are equivariant with the exchange of electrons,135

P
∥
i jφk(ri,{r↑},{r↓}) = φk(r j,{r↑},{r↓}) , (9)

where P
∥
i j is the operator exchanging same-spin electrons i and j.136

Most of the currently used deep-learning molecular wave functions7,8,11 share the functional137

form of (7), and (8), and differ only in the parametrization of the many-body orbitals φ
p
k and138

single-particle envelopes ϕ
p
k . DEEPQMC aims to provide a general framework for variational139

optimization of deep-learning molecular wave functions, facilitating the investigation of the design140

space spanned by the PauliNet, FermiNet, and DeepErwin neural network ansatzes.141

D. Pseudopotentials142

Despite the favorable asymptotic scaling of VMC with the number of electrons, systems con-143

taining heavy nuclei remain challenging due to a variety of reasons. The high energy of electrons144

near these nuclei complicates simulations by spoiling the optimization and reducing the effective-145

ness of MCMC sampling. Furthermore, the kinetic energy of these electrons reaches the relativis-146

tic regime, requiring the treatment of relativistic effects that are not accounted for in the standard147

non-relativistic molecular Hamiltonian of (1). On the other hand, while the core regions of heav-148

ily charged nuclei contribute dominantly to the total energy, they are typically unchanged during149

chemical processes and thus have little effect on the chemically relevant relative energies. There-150

fore most quantum chemistry methods targeted at computing relative energies reduce the above151

outlined difficulties, by treating the outer (valence) electrons separately from the inner (core) elec-152

trons.153

The approach most suited for implementation in the context of variational optimization of deep-154

learning wave functions is the use of pseudopotentials, which has been previously demonstrated155

by Li et al.16. In this method, the core electrons are excluded from the explicit calculation and156

replaced by additional terms in the Hamiltonian, to simulate their influence on the remaining Nv157

7

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
57

51
2



Accepted to J. Chem. Phys. 10.1063/5.0157512

valence electrons. The modified Hamiltonian reads as158

Ĥ =
Nv

∑
i=1

(

−
1

2
∆ri

+
i−1

∑
j=1

1
|ri−r j|

)

+V̂PP . (10)

The V̂PP pseudopotential term is in turn decomposed to local and non-local parts159

V̂PP =
M

∑
I=1

Nv

∑
i=1

(

V I(riI)+
lmax

∑
l=0

W I
l (riI)P̂

iI
l

)

, (11)

where riI = |ri −RI|, V I and W I
l are sets of scalar functions describing the local and non-local160

pseudopotential contributions, while P̂iI
l = ∑

m=l
m=−l |lm⟩iI ⟨lm|iI is a projection operator of the i-th161

electron on spherical harmonics centered on the I-th nucleus. To evaluate the contribution of the162

non-local part of the pseudopotential (second term of (11)) one considers integrals of the form163

⟨r|W I
l P̂iI

l |ψ⟩

⟨r|ψ⟩
=W I

l (riI)
l

∑
m=−l

Ylm(ΩiI)

×
∫

Ylm(Ω′
iI)

∗ψ(r1,...,(riI ,Ω
′
iI),...,rN)

ψ(r1,...,(riI ,ΩiI),...,rN)
dΩ′

iI

(12)

where Ylm is a spherical harmonic and (riI,ΩiI) denotes the position vector of the i-th electron ri,164

expressed in spherical coordinates centered on nucleus I. Following the first implementation of165

pseudopotentials for deep-learning molecular wave functions by Li et al.16, the above integral is166

approximated using an icosahedral quadrature of 12-points.167

The scalar functions V I and W I
l are typically pre-computed by expanding them in a Gaussian168

basis, and fitting the expansion parameters directly to a database of reference energies. The DEEP-169

QMC program package currently includes the widely used BFD34, and the most recent ccECP35
170

pseudopotentials, with an application of the latter presented in Section VIII B.171

III. WAVE FUNCTION DESIGN SPACE172

DEEPQMC implements a variety of options to obtain the equivariant many-body orbitals φ
p
k173

and the accompanying envelopes ϕ
p
k , covering PauliNet, FermiNet, DeepErwin and their deriva-174

tives. In the following, the main architectural concepts of these wave function ansatzes will be175

described in more detail. For ease of use DEEPQMC provides predefined configuration files to176

obtain the above mentioned ansatzes, while allowing their interpolation through a manual choice177

of hyperparameters.178
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ri ZI

σi RI

embedding

cusp jastrow orbitals env

⊗

det

⊗

⊗

Ψ

f
(n),l
i f

(e),l
iJ

f
(n),l
I

f
(e),l
ij

conv/aggr

update

ri ZIσi RI

⊕
×L

(rij, |rij|) (riJ , |riJ |)

f
(n),L
i

(riJ , |riJ |)(rij, |rij|)

mlp

mlp mlp

mlpmlp

mlp mlp mlp

emb emb

Σdet

(17)

(18)

(13) (14)(15)(15)

(16)(16)

(24) (23) (19) (20)

(8)

FIG. 1. Sketch of a general neural network wave function ansatz and its graph neural network archi-

tecture. This sketch comprises the implemented design space for the neural network wave function (left)

and the GNN architecture (right). Solid lines can carry MLPs and dotted lines correspond to forwarding

without further change. Numbers in parentheses refer to the corresponding equations of the main text. The

choice among the drawn connections, the depths of the associated MLPs as well as the aggregation and

update rules distinguish the previously published works PauliNet, FermiNet, and DeepErwin.

A. Graph Neural Networks179

Central to the neural network wave function ansatzes is the computation of equivariant many-180

body embedding vectors for the electrons, which are used downstream to obtain the entries of the181

generalized Slater determinant. Many strategies of obtaining these embeddings can be unified in182

the framework of graph neural networks (GNNs). GNNs are well suited to model functions on183

graphs that exhibit certain permutational symmetries, and can be adapted to describe electrons of184

molecules in real-space.185

An electronic configuration of a molecule can be encoded as a graph, where the nodes are186

electrons and nuclei, and the connecting edges carry pairwise features, e.g. difference vectors.187

GNNs are functions of these graphs, yielding high-dimensional latent space embeddings of the188

nodes. The electronic node embeddings are initialized with single-electron features and iteratively189

updated to incorporate many-body information of the electronic environment. Using graph con-190

volutions, the updates are invariant under the exchange of electrons in the environment, and the191
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conditions of (9) are fulfilled.192

The most relevant aspects of the GNN architecture implemented in DEEPQMC are sketched193

on the right pane of Figure 1, and are discussed in detail in the following. Electron positions194

(spins) are denoted with r (σ ), while R and Z indicate nuclei positions and charges. Node and195

edge quantities are denoted with the superscripts (n) and (e), respectively. Furthermore, l indexes196

the GNN interaction layers, θ denotes functions parametrized by MLPs, and t runs over the dif-197

ferent edge types (those between electrons of identical or opposite spins, or between electrons and198

nuclei), node types (electron or nuclei nodes) or message types. Lastly, vertical brackets indicate199

the different options implemented in DEEPQMC for the computation of various quantities.200

The graph representation:201

A graph is a natural way to denote the electronic configuration of a molecule in real-space.202

The nodes of the graph represent particles (electrons and nuclei), carrying information such as203

spin or nuclear charge. The edges support the difference vectors between the particles, resulting204

in a representation invariant under global translation. Note that using internal coordinates that205

are invariant under global rotation may not be sufficient to represent all wave functions (simple206

counterexamples are atomic wave functions with P symmetry), and can only be employed with a207

careful treatment of the spatial symmetries.208

To implement a variety of wave function ansatzes, DEEPQMC provides configuration options209

to define the specifics of the graph construction outlined above. Most importantly, the nodes210

corresponding to nuclei, and their respective nuclei-electron edges can optionally be excluded211

from the graph. In this case, electron-nuclei information can still be introduced to the GNN, by212

initializing the electron embeddings using a concatenation of the difference vectors between the213

positions of the given electron and all nuclei (see the second case of (13)).214

Node features:215

The output of DEEPQMC GNNs are electron node embeddings f
(n)
i which are subsequently216

used to generate the many-body orbitals that constitute the entries of the generalized Slater deter-217

minants and an optional trainable Jastrow factor. To enforce the equivariance of these quantities218

with respect to the exchange of electrons, the initialization of the electron embeddings has to be219
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chosen appropriately. In DEEPQMC one can either use identical embeddings for all electrons220

of the same spin (invariant under permutation of same-spin electrons), or a concatenation of the221

electron nuclei difference vectors (equivariant under electron permutations)222

f
(n),0,el
i =











E
(n),el

θ
(σi)

E
(n),el

θ
(ri −R1, ...,ri −RN) ,

(13)

where E
(n),el

θ
are parameterized node embedding functions implemented through MLPs.223

If the GNN is chosen to explicitly consider electron-nuclei interactions, the embeddings associ-224

ated with the nuclear nodes have to be initialized besides the electronic embeddings. DEEPQMC225

implements fixed nuclear node embeddings f
(n)
I , that either distinguish all nuclei or depend on the226

respective atom type:227

f
(n),0,nuc
I =











E
(n),nuc

θ
(I)

E
(n),nuc

θ
(ZI) .

(14)

Edge features :228

The edges of the graph hold the pairwise differences of node positions (ri j) and their embed-229

dings are consequently initialized as230

f
(e),0,t(e)

i j = E
(e),t(e)

(ri j) , (15)

where E (e),t(e)
is an edge type dependent featurization based on the pairwise differences. This may231

correspond to directly feeding the difference vectors, using the pairwise distances, expanding in232

a basis of Gaussians or working with rescaled difference vectors amongst other options. In later233

interaction layers, the original edge embeddings are either reused or iteratively updated,234

f
(e),l,t(e)

i j =











f
(e),0,t(e)

i j

u
l,t(e)

θ
(f
(e),l−1,t(e)

i j ) ,
(16)

with the latter option making use of a parametrized update function u
l,t(e)

θ
, thus increasing the235

effective depth of the architecture at the cost of additional MLPs. The parameters of the update236

function u
l,t(e)

θ
may be shared across different edge types.237
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Message generation:238

The electron embeddings are updated in each interaction layer by aggregating messages passed239

along the graph edges. These messages are constructed via an elementwise product between func-240

tions of the sending node and edge embeddings (graph convolution),241

m
l,t(m)

i = ∑
j∈t(n)

w
l,t(e)

θ
(f
(e),l,t(e)

i j ) ·hl,t(n)

θ
(f
(n),l,t(n)

j ) . (17)

The superscript t(n) on the node features specifies the subset of sending nodes and the superscript242

t(e) on the edge features depends on the type of the sending and the receiving nodes respectively.243

The choice of how to distinguish electron-electron messages based on their spin (relative spin244

of sending and receiving electron, spin of sending electron, or no distinction between messages245

from spin-up and spin-down electrons) is another hyperparameter of the GNN. Optionally, the246

above sum over the edges can be normalized by dividing it with the number of edges. Note that247

messages depending only on node (edge) information can be obtained by setting the function w
l,t(e)

θ
248

(h
l,t(n)

θ
) to return identity. The superscript t(m) runs over all the constructed messages, which may249

include different choices of w
l,t(e)

θ
and h

l,t(n)

θ
.250

Electron embedding update:251

To obtain updated electron embeddings, messages from various edge types are combined and252

added to a residual connection. DEEPQMC implements a few protocols for the combination of253

messages, that can be summarized as follows254

f
(n),l+1,el
i = f

(n),l,el
i +























∑t(m) g
l,t(m)

θ

(

m
l,t(m)

i

)

gl
θ

(

∑t(m) m
l,t(m)

i

)

gl
θ

(

⊕

t(m) m
l,t(m)

i

)

,

(18)

where
⊕

refers to the concatenation of the messages. Additionally to the messages constructed255

according to equation (17) the message types t(m) can include a residual connection f
(n),l
i such that256

the trainable self-interaction of FermiNet and DeepErwin can be reproduced.257

In the above outlined general GNN framework a wide variety of ansatzes can be obtained.258

Furthermore, the implementation of DEEPQMC and its GNN framework focus on facilitating259

rapid extensions with new ansatz variants either by exploration within the existing hyperparameter260

space or by extending it with new features.261
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B. Orbital construction262

The entries of the generalized Slater determinant in (8) are obtained as products of many-263

body orbitals φ
p
k and envelopes ϕ

p
k . The many-body orbitals are functions of the final equivariant264

electron embeddings265

φ
p
k (ri,{r↑},{r↓}) = κθ(f

(n),L
i ), (19)

where κθ is an MLP applied electronwise, projecting the embedding dimension to the required266

number of orbitals. For the ϕ
p
k envelopes, DEEPQMC implements linear combinations of expo-267

nentials centered on the nuclei268

ϕ
p
k (ri) = ∑I∑βI

ω
p

kβI
exp
(

−||Σp

kβI
(ri −RI)||

α
)

, (20)

where ω
p

kβI
and Σ

p

kβI
are trainable parameters and βI indexes the basis function centered on atom I.269

The hyperparameter α ∈ (1,2) represents the choice of Slater type orbitals with α = 1, and Gaus-270

sian type orbitals (GTOs) with α = 2. DEEPQMC provides an option to restrict the envelopes to271

be isotropic (Σ
p

kβI
:= σ

p

kβI
· I). The GTOs can be initialized from the molecular orbital coefficients272

of reference solutions with standard quantum chemistry basis sets obtained in PySCF36.273

C. Determinant construction274

Because the antisymmetry of the wave function is required with respect to the exchange of275

same-spin particles only, Slater determinants in VMC are typically considered block diagonal and276

are factored into a spin-up and a spin-down component277

ψθ = ∑pcp det
[

A↑,p(r)
]

det
[

A↓,p(r)
]

. (21)

Additionally, DEEPQMC implements the full determinant option explored by Lin et al.10, which278

constructs a single determinant using both spin-up and spin-down electrons279

ψθ = ∑pcp det
[

A↿⇂,p(r)
]

. (22)

It’s noted that since the many-body orbitals are not equivariant under the exchange of opposite280

spin electrons, the full determinant ansatz is still not antisymmetric with respect to these per-281

mutations. Instead, a full determinant can practically be understood as an expansion in multiple282
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spin-factorized determinants, e.g. by relying on the generalized Laplace expansion of determinants283

to expand det
[

A↿⇂,p(r)
]

according to the rows corresponding to spin-up electrons284

det
[

A↿⇂(r)
]

= ∑SεS det
[

A↑,S(r)
]

det
[

A↓,S̄(r)
]

. (23)

Here, S runs over all subsets of the orbitals that contain as many elements as the number of spin-up285

electrons, S̄ stands for the complement subset of S, A↑,S(r) denotes the submatrix of A↿⇂(r) formed286

from the orbitals in S and the spin-up electrons, while εS is the sign of the permutation defined by287

the subset S. For the block diagonal matrices of (21), the determinants for all subsets of spin-up288

orbitals containing off-diagonal elements evaluate to zero and the sum in (23) reduces to a single289

product of a spin-up and spin-down determinant. Note that since the many-body orbitals defined in290

(19) are not equivariant with respect to exchanges of electrons with opposite spins, the terms on the291

right hand side of (23) with different Ss will in general be unrelated. In practice, it is conceivable292

that due to the concrete form of parametrization of the many-body orbitals, there remains some293

structure in the set of factorized determinants, that makes the full determinant more effective than294

using an equivalent number of spin-factorized determinants formed from independent orbitals.295

D. Jastrow factor and cusp correction296

The antisymmetry of the wave function is retained when multiplying it with a global correc-297

tion term symmetric under the exchange of the same spin particles. This symmetric correction,298

traditionally called a Jastrow factor, is well suited to introduce known asymptotics to the ansatz.299

DEEPQMC implements a learnable Jastrow factor eJ , where J is computed from the permutation300

invariant sum of many-body electron embeddings301

J = ηθ

(

∑
i

f
(n),L
i

)

, (24)

with ηθ again being implemented by an MLP. Furthermore, DEEPQMC provides a fixed Jastrow302

factor that implements the known asymptotic behavior 37 when two electrons approach303

γ(r) = ∑
i< j

−
αci j

1+α|ri − r j|
, (25)

where ci j is 1
4

if the electrons i and j are of the same spin and 1
2

if the electrons possess opposite304

spins and the hyperparameter alpha scales the width of the correction term. If cuspless Gaussian305
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envelopes are used, a similar cusp correction can be employed for the nuclei306

γ(r,R) = ∑
i,I

αZI

1+α|ri −RI|
, (26)

serving as a simple replacement for the more involved technique utilized by Hermann et al.7.307

E. Log-representation of the wave function308

The output of the (unnormalized) neural network wave functions typically spans many orders309

of magnitude, potentially resulting in instabilities due to finite floating-point precision. In order to310

improve numerical stability, DEEPQMC represents wave functions in the log-domain311

ψ =
(

sign(ψ), log(|ψ|)
)

. (27)

We mitigate over- and underflow problems during the computation of the determinant by perform-312

ing it directly in the log-domain using the appropriate slogdet function provided by JAX. In order313

to perform the summation over multiple determinants φ p we apply the log-sum-exp trick314

log
(

∣

∣∑
p

φ p
∣

∣

)

= max{log(|φ p|)}+ log
(

∣

∣∑
p

sign(φ p)exp
(

log(|φ p|)−max{log(|φ p|)}
)∣

∣

)

. (28)

Note that for the variational principle to remain valid, it is sufficient to ensure the antisymmetry of315

the trial wave function, and its explicit sign is not needed for the evaluation of any of the quantities316

involved in the optimization (30).317

IV. TRAINING318

In this section, some technical aspects of the variational optimization of deep-learning trial319

wave functions are discussed. While these ansatzes are trained within the standard VMC frame-320

work, the characteristics of their optimization differ markedly from other VMC ansatzes, mainly321

due to the greatly increased parameter count introduced by neural networks. On the other hand,322

it is also distinct from most other deep-learning settings owing to the unusual complexity of the323

loss function and the self-supervised setting, where training data is generated in parallel to the324

optimization.325
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A. Loss function and gradient trick326

As discussed in Section II B, VMC relies on the variational principle by optimizing the wave327

function ansatz to minimize the expectation value of the local energies. From a machine learning328

perspective, this translates to considering the loss function329

L (θ) = Er∼|ψθ |2
[

Eloc[ψθ](r)
]

. (29)

Naively computing the gradient of this loss would involve taking derivatives of the local energies330

Eloc[ψθ] with respect to the ansatz parameters θ. However, evaluating the local energy already331

involves second derivatives of the wave function with respect to the electron coordinates due to the332

Laplacian in (1). Consequently, this naive gradient computation would necessitate taking mixed333

third derivatives of the ansatz.334

To reduce the computational costs and numerical instabilities associated with higher order335

derivatives, a different unbiased estimator of the loss gradient is utilized,336

∇θL (θ) = 2Er∼|ψθ |2
[(

Eloc[ψθ](r)−L (θ)
)

∇θ log|ψθ|
]

. (30)

The derivation of this estimator exploits the hermiticity of the Hamiltonian and is given in full337

detail by Inui et al.38. It replaces the derivatives of the local energy with a simple gradient of the338

wave function, therefore it is expected to be more efficient and numerically stable to evaluate than339

the direct gradient computation.340

B. Local energy evaluation341

The evaluation of the local energies of the wave function ansatz is by far the most computation-342

ally demanding part of the training (and evaluation)343

Eloc[ψθ](r) =−
1

2
∑

i

(∆ri
ψθ(r)

ψθ(r)

)

+V (r)

=−
1

2
∑

i

(

∆ri
log |ψθ(r)|+

(

∇ri
log |ψθ(r)|

)2
)

+V (r).

(31)

While the potential energy term is very cheap to evaluate, the cost of the Laplacian within the344

kinetic energy term scales steeply with the number of electrons. In this step, one obtains sec-345

ond derivatives of the wave function with respect to the electron coordinates. We obtain these346

derivatives of the wave function by applying automatic differentiation in backward-forward mode,347
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which we confirmed to be a good choice in the setting of molecular wave functions. Further dis-348

cussions regarding the memory bottleneck associated with the Laplacian and details regarding the349

implementation choices are presented in the Appendix A.350

C. Pretraining351

Choosing initial values for ansatz parameters is a non-trivial question common to many compu-352

tational chemistry methods. One need only think of the sensitivity of the self-consistent iterations353

to the initial guess in Hartree–Fock (HF) and related methods39–41. The case of deep-learning354

VMC ansatzes is no different – a random initialization of the neural network parameters according355

to some of the widely adopted schemes of the machine learning community can lead to the opti-356

mization diverging or converging to local minima. This problem becomes increasingly severe with357

growing system size, presumably due to the higher-dimensional, more complex wave functions of358

larger molecules and their intricate nodal structure.359

A practical solution to this issue is the initialization of the wave function based on a cheap360

reference solution. To that end DEEPQMC interfaces with PYSCF36, enabling the initialization361

of wave functions from the coefficients of a preceding HF or multi-configurational self consistent362

field (MCSCF) calculation. While this allows the direct initialization of the neural network wave363

function ansatz as introduced by Hermann et al.7, subsequent work suggested that explicitly incor-364

porating an approximate reference wave function in the model can deteriorate performance11. In-365

stead a short, supervised pretraining with respect to a reference solution before the self-supervised366

variational optimization is recommended. In this step, the many-body orbitals of the ansatz are367

trained to match the reference by minimizing the pretraining loss368

Lp(θ) =

Er∼|ψθ |2
[

∑
ki

(

ϕ ref
k (ri)−φk(ri,{r↑},{r↓})×ϕk(ri)

)2]
,

(32)

where ϕ ref
k are the occupied orbitals of the HF/MCSCF wave function. Unlike the variational loss369

of (29), computing Lp does not involve evaluating the Laplacian of the ansatz, which means that370

pretraining requires significantly less computational resources than variational training. Initializa-371

tion with pretrained orbitals, as introduced by Pfau et al.8, improves the convergence properties372

of the variational training and, if well balanced with the subsequent variational optimization, can373

even slightly boost the final accuracy, as Gerard et al. recently demonstrated11.374
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D. Gradient clipping375

Despite the utilization of sophisticated gradient estimators and pretraining, the convergence376

of the variational optimization is still often hindered by outliers in the training batches of local377

energies. The existence of these outliers is not surprising, considering that the electrostatic energy378

is singular when two particles coincide, while the kinetic energy is singular at the nodes of the wave379

function – energy contributions that the shape of the wave function precisely levels out in later380

stages of the training. While the outliers are valid contributions to the energy expectation value,381

their presence can inject a lot of noise into the gradient estimates. To reduce their contribution to382

the parameter update, the loss and its gradient (given in (29) and (30)) are evaluated using clipped383

local energies Ê
µ,σ
loc , where µ is the center and σ is the half-width of the clipping window.384

Regarding concrete choices for µ and σ , some empirical findings have been reported in the385

related literature. Investigating transition metal atoms using pseudopotentials, Li and coworkers386

report16, that choosing σ = 10× std(Eloc) significantly outperforms all other options they’ve con-387

sidered. More recently, von Glehn et al.12 found that centering the clipping window at the median388

of local energies, and using the mean absolute deviation from the median to determine σ , im-389

proves the training of multiple deep-learning ansatzes. Considering the practical importance of390

the clipping mechanism, DEEPQMC implements the algorithm of von Glehn et al.12, along with391

an analogous logarithmically scaling “soft” clipping scheme introduced by Hermann et al.7, but392

also offers full flexibility to the user in specifying custom clipping functions.393

Finally, it should be highlighted that the local energies are only to be clipped for computing the394

gradient of the loss during optimization. Since clipping can introduce a bias to the estimate of the395

energy expectation value, variational energy estimates can only be obtained from unclipped local396

energies.397

E. Optimizer398

Utilizing natural gradient descent optimization42 or Kronecker-factored approximations thereof43
399

has proven to be a crucial ingredient to the success of variational optimization of deep-learning400

wave functions on molecular systems8,11,12,44,45. Consequently, DEEPQMC makes use of the401

Kronecker-Factored Approximate Curvature (KFAC) optimizer implementation of A. Botev and402

J. Martens46. To showcase the importance of the choice of the optimizer, the performance of403
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KFAC is compared to the commonly employed first-order optimizer AdamW47, on variational404

trainings on six test systems. The obtained training energy curves are plotted in Figure 2. To ac-405

count for the 10–25% longer per iteration run time of KFAC compared to AdamW, the wall clock406

time of the training (instead of the usual iteration count) is shown on the horizontal axes. The407

results show that the slightly increased per-iteration cost is offset by the significantly improved408

per-iteration convergence speed of the KFAC optimizer. Furthermore, it is found that the increase409

in the relative cost of KFAC over AdamW optimization is smaller for systems with larger numbers410

of electrons. In practice, this means that the last percents of correlation energy can be recovered411

much more efficiently with KFAC, resulting in improved final energies for a given computational412

budget.413

The effectiveness of natural gradient descent in this setting can be rationalized through its con-414

nection to the stochastic reconfiguration method8,48, known from traditional variational quantum415

Monte Carlo optimization49,50.416

These higher order methods utilize the Fisher information of the unnormalized density associ-417

ated with the wave function as a preconditioner to the gradients. KFAC extends the application418

range of natural gradient descent by low-rank approximating the Fisher information, facilitating419

its computation for neural network wave functions with large numbers of model parameters.420

Instead of following the steepest descent in parameter space, an optimization step with the421

preconditioned gradient is in the direction of steepest descent in distribution space, with distance422

defined by the Kullback–Leibler (KL) divergence51. Considering that in VMC the predicted quan-423

tity ψθ(r) directly defines the distribution p(r|θ) ∝ |ψθ(r)|
2, one concludes that a natural gradient424

step is in the direction of maximal loss decrease for a given KL divergence between ψθ and ψθ+dθ.425

This is an advantageous property, as relying on the KL divergence results in updates that are inde-426

pendent of the way ψθ is parameterized, as opposed to the steepest descent where the Euclidean427

metric introduces strong dependence.428429

V. SAMPLING430

An important characteristic of VMC is that the data (electron positions) used to fit the model431

is generated in tandem with the optimization, by sampling the probability distribution of the elec-432

tronic degrees of freedom defined by the square of the wave function. This sampling task comes433

with its own challenges, due to its tight coupling with the training. For the variational principle to434
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FIG. 2. Comparing the performance of the AdamW and KFAC optimizers. Total energy errors during

the training process are shown for beryllium, lithium hydride, methane, ammonia, water, and cyclobutadi-

ene. The horizontal axes show the wall clock time of the training, measured on a single Nvidia GTX 1080

Ti GPU. To obtain smooth training curves, the exponential moving average of the training energy is plotted.

While on smaller systems (Be and LiH) AdamW converges slightly faster, due to its lower per-iteration

cost, on the larger systems the benefit of using KFAC is clear.

remain valid, the samples used to evaluate (6) must be equilibrated according to the distribution435

r ∼ |ψθ(r)|
2. Furthermore, since ψθ is updated in every training iteration, the sampling must ac-436

count for the corresponding changes in the distribution of the electron positions. To carry out this437

demanding sampling task in a computationally efficient manner, the DEEPQMC program package438

offers two optimized Markov chain Monte Carlo (MCMC) algorithms. Along with the Random439

Walk MCMC algorithm52,53, referred to as Metropolis sampler, the Metropolis-Adjusted Langevin440

Algorithm54 (MALA), referred to as Langevin sampler, is also implemented, that proposes walker441

updates using overdamped Langevin dynamics. The implemented MALA includes the correction442

proposed by Hermann et al.7, which scales the electron step sizes around the nuclei to avoid "over-443

shooting" the latter. Additionally, changes of the wave function during training can be accounted444

for by re-equilibration after each gradient step or using a batch reweighting scheme. In the fol-445

lowing sections, these MCMC samplers along with the above described sampling difficulties are446

characterized in more detail.447
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FIG. 3. Top: Evaluation of a trained wave function ansatz, bottom: sampling error for the evaluation

of a trained ansatz. The convergence of the energy expectation value is depicted during the evaluation

of an optimized CH4 ansatz using two thousand MCMC walkers. In the top pane, sampling is performed

with the Random Walk MCMC algorithm. The evaluated energy is compared to the final training energy,

with shaded areas showing error estimates. In the bottom pane, the convergence of the sampling errors

of evaluations with the Metropolis sampler and the Langevin sampler are compared. The sampling errors

converge as n−1/2 with the number of samples n, as expected from the central limit theorem.

A. Energy convergence448

First, the convergence of the energy expectation value estimate is investigated, when sampling449

an unchanging, previously trained ansatz. In order to draw n = nb × ns electron samples {r}i j,450

distributed according to |ψθ(r)|
2, a batch of nb many walkers is propagated for ns MCMC steps.451

Based on the electron samples the energy expectation value is estimated as452

⟨E⟩=
1

n

nb

∑
i=1

ns

∑
j=1

Eloc[ψθ]({r}i j) . (33)

Following the central limit theorem32,55, the sampling error of such estimates decays proportional453

to n−1/2. To approximate the sampling error, we utilize the nonoverlapping batch means estimator,454

as reviewed by Flegal et al.55. We first obtain independent estimates of the energy by averaging455

the local energies over the walker trajectories (batches)456

⟨E⟩i =
1

ns

ns

∑
j=1

Eloc[ψθ]({r}i j) . (34)
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Considering these batches, the sampling error is then estimated as457

⟨σE⟩=

√

∑
nb

i=1(⟨E⟩
i −⟨E⟩)2

nb(nb −1)
. (35)

The convergence of the energy estimate and its error bar throughout the evaluation of an ansatz458

trained on the CH4 molecule is plotted in Figure 3. In the top pane, the final value of the exponen-459

tial walking mean of the training energies, and its estimated error are also shown with a horizontal460

line and shaded area. It can be seen from this plot that the energy estimate of the evaluation con-461

verges gradually towards the final training energy as expected, while its sampling error converges462

towards zero. Note that due to the parameter updates during the optimization, the energy estimate463

from the training is an unreliable estimate and a thorough evaluation of the energy expectation464

value requires sampling the ansatz with fixed parameters.465

On the bottom pane of Figure 3, the convergence of the estimated sampling error is compared466

between the Metropolis sampler and the Langevin sampler. Importantly, the expected n−1/2 con-467

vergence behavior is observed for both methods. Comparing the two algorithms, it can be seen468

that the error of MALA converges slightly faster than that of Random Walk MCMC, indicating469

a lower degree of correlation between the subsequent positions of the walkers of the Langevin470

sampler.471

B. Decorrelated sampling472

To characterize the phenomenon of correlated samples hinted at in Section V A, autocorrelation473

functions of the local energy samples are investigated. The autocorrelation function of the local474

energies sampled by a single MCMC chain is defined as:475

ρEloc
(t) =

∫ ∞

−∞

(

Et ′+t
loc −µEloc

)(

Et ′

loc −µEloc

)

dt ′ , (36)

where Et
loc denotes the local energy sampled at step t, and µEloc

is the mean of the local ener-476

gies over the entire trajectory. The autocorrelation time of the local energy is then computed as477

τ ′ = 2
∫ ∞

0 ρEloc
(t)dt. Finally, τ is obtained by taking the mean of τ ′s over all propagated MCMC478

chains, providing a simple measure of local energy autocorrelation.479

The autocorrelation times for five atoms of increasing size and the cyclobutadiene molecule480

are plotted on the upper pane of Figure 4, for both the Metropolis and the Langevin sampler. The481
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FIG. 4. Autocorrelation times of the local energy samples. The top pane shows the MCMC sampling

autocorrelation time τ , as defined in Section V B, for a sequence of atoms and the ground state of cyclobu-

tadiene. The bottom pane shows the run time of performing τ sampling steps for the same systems. The

electrons are sampled using either the Metropolis sampler or the Langevin sampler. Following the sugges-

tion of Sokal56, the autocorrelation times are estimated using MCMC chains of length ≈ 5τ .

general trend of longer autocorrelation times for larger systems can be observed for the Metropo-482

lis sampler. One of the main causes of this trend is the increasing nuclear charge, which induces483

higher and higher peaks in the distribution of the electrons near the nuclei. These pronounced484

peaks necessitate shorter update proposal radii, ultimately resulting in a higher correlation between485

subsequent samples. Furthermore, the autocorrelation time is expected to grow with the increas-486

ing complexity of the wave functions and their nodal surfaces. On the other hand, the Langevin487

sampler seems less affected by this trend, delivering largely constant autocorrelation times for all488

systems. It is reasonable to assume that by explicitly making use of information about the gradient489

of the wave function, the MALA update proposal retains better decorrelation efficiency than Ran-490

dom Walk MCMC, when considering more and more complicated wave functions. Finally, the491

showcased autocorrelation times are in reasonably good agreement with the fact that the default492

number of decorrelating steps performed between parameter updates is chosen between 10–30 in493

the currently used neural wave function program packages.494

The experiments depicted in Figure 4 also demonstrate a slightly smaller correlation between495

subsequent samples of the Langevin sampler in comparison to those of the Metropolis sampler,496

for all but the smallest of systems. On the bottom pane of Figure 4, the wall clock run time of497

performing τ sampling steps are shown for each system, to account for the slightly increased com-498
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putational cost of the MALA update proposal. Considering wall clock run times, the Metropolis499

sampler is more efficient on atoms up to carbon, while the Langevin sampler performs slightly500

to considerably better on the larger atoms and cyclobutadiene. While we find MALA to be more501

efficient than Random Walk Metropolis, we observe that for larger systems with heavier nuclei502

it could result in less stable optimization. To improve the black-boxed nature of the method, we503

applied Random Walk MCMC in all subsequent experiments.504

VI. SCALING505

Understanding the scaling of a method’s computational cost with the considered system size506

is of utmost importance in the field of quantum chemistry, where a pervasive caveat of the most507

accurate approaches is their unfavorable scaling behavior. Given its high accuracy, the asymptotic508

scaling of VMC (typically listed with N4)32 is considered favorable. Although this general scaling509

is indeed much better than e.g. the N7 scaling of the gold-standard CCSD(T) method, and on par510

with the scaling of hybrid density functionals (such as DM213), deep QMC calculations incur a511

larger prefactor, resulting in much higher practical costs on systems of intermediate size. While512

reducing this prefactor is an important long term goal of method developers in the field, investigat-513

ing the method’s scaling is also of interest, to estimate the prospect of system sizes feasible with514

further improvement and serve as a baseline for future developments. In this section, the scaling515

of the computational cost of the variational training of deep-learning ansatzes is investigated using516

the DEEPQMC program package. Further scaling aspects of the pseudopotential implementation,517

and design choices regarding the major computational bottlenecks of the algorithm are discussed518

in Appendix A.519

The theoretical scaling of VMC (N4) is obtained when combining the N3 cost of the determi-520

nant evaluation with an additional factor of N from the Laplacian required in the computation of521

the kinetic energy. In practice, however, for simulations with the currently feasible system sizes,522

the determinant evaluation makes up only a fraction of the computational cost, which is instead523

dominated by the evaluation of the neural networks of the ansatz. To investigate the practical524

scaling of a variational training step in DEEPQMC, single iteration run times are compared across525

atoms with increasing atomic numbers, as well as across chains containing an increasing number526

of hydrogen atoms (Figure 5). Although the systems contain different numbers of particles, due to527

the parametrization with GNNs the total parameter count of the wave function ansatz changes only528
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FIG. 5. Scaling of the computational cost with system size. The figure depicts the time in seconds per

variational optimization step for systems with up to 45 electrons. The timings were obtained for training

steps with a batch size of 2000 run, on a single A100 GPU. An exponential fit gives the scaling exponent of

2.79 for the hydrogen chains and 2.37 for the atoms respectively.

marginally between systems. On the other hand, owing to the varying numbers of nuclei, isoelec-529

tronic species can have slightly different computational requirements. The system classes of atoms530

and hydrogen chains were chosen, as they represent the lower and upper bounds respectively, on531

the number of nuclei a neutral system with a fixed number of electrons can contain. Consequently,532

the scaling of the run time with the number of electrons is also expected to be bounded by these533

system classes. With the tight empirical bounds of N2.36−2.79 depicted in Figure 5, the observed534

scaling of DEEPQMC is still far below the theoretical estimate of N4, highlighting the potential535

for extension to larger systems.536

VII. ANSATZ VALIDATION537

Relying on the general framework introduced above, the DEEPQMC software suite enables the538

use of many of the previously published deep-learning ansatzes by providing configuration files539

to reproduce PauliNet7, FermiNet8 and DeepErwin11. To validate our implementation of these540

ansatzes, the hyperparameters of sampling, optimization, and GNN architecture are compared in541

depth to those of the respective reference implementations. Additionally, it is verified that when542

using the same parameters, the DEEPQMC implementations predict the same wave function value543

and local energy as their reference counterparts for a given configuration of electrons and nuclei.544
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Note that we have refrained from exactly matching the cusp-corrected GTOs of PauliNet, because545

subsequent work has demonstrated that explicitly including a reference solution is limiting the ac-546

curacy of the ansatz. However, by combining Gaussian envelopes initialized from the coefficients547

of a reference calculation with a nuclear cusp correction in the Jastrow factor (26) it is possible548

to obtain a variant of PauliNet within DEEPQMC, that matches the characteristics of the original549

ansatz.550

In Figure 6 the empirical performance of the various ansatzes is checked against results pub-551

lished in the literature for a small set of molecules. It can be seen that our DEEPQMC implemen-552

tation of PauliNet, FermiNet, and DeepErwin matches the reference energies well. The remaining553

discrepancies of FermiNet result from slightly different experimental setups, such as an increased554

number of reference optimization steps (200 000 compared to 50 000 used here) and batch size555

(4096 compared to 2048 used here), or an older TensorFlow-based implementation being used556

in case of N2. The impact of these changes on the deviations of the model accuracy highlights557

the importance and difficulty of comparing ansatzes implemented in different codebases under the558

same experimental conditions.559

As a further contribution, we introduce and analyze the performance of a new default ansatz560

for the DEEPQMC program package, which we refer to as PauliNet2. This exemplary ansatz was561

optimized to have a good trade-off between accuracy and trainable model parameters. Despite562

achieving a similar accuracy as FermiNet and DeepErwin for the small systems under investiga-563

tion (see Figures 6 and 7), the PauliNet2 ansatz has only about a third of the model parameters of564

FermiNet and a quarter of DeepErwin (i.e. for the CO molecule 239 829, 766 944, and 998 816 pa-565

rameters respectively). The ansatz combines the SchNet-like graph convolutions of PauliNet (17)566

with the iterative update of the edge embeddings of FermiNet (18). Edge features are constructed567

from difference vectors between the electrons and isotropic exponentials are used as envelopes.568

Furthermore, the ansatz comprises a trainable Jastrow factor (24) as well as the fixed electronic569

cusp correction (25). While these hyperparameters are found to be suitable for the presented ex-570

periments, it is conceivable that an extended hyperparameter search targeting specific applications571

could further improve its performance. The detailed settings of the discussed ansatzes can be572

found in the respective configuration files shipped with the DEEPQMC package.573574
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FIG. 6. Validating the DEEPQMC implementation of various ansatzes by comparing their accuracy

to published results obtained with their respective reference implementations. Note that results ob-

tained with the DEEPQMC or DeepErwin codebases were computed using 50 000 variational optimization

steps and a batch size of 2048, while the FermiNet reference results used 200 000 training steps and 4096

samples in a batch. Results computed with the reference implementations are taken from the works of

Pfau8, Spencer44, and Gerard11.

VIII. APPLICATION EXAMPLES575

In this section, the ease of applying the DEEPQMC program package as a black-box method576

to obtain electronic energies is demonstrated on benchmark datasets. Two widely different exam-577

ple problems are chosen in order to showcase the general applicability of the presented method.578

The experiments are performed using DEEPQMC command line interface, which exposes all con-579

figuration options of the software suite while also allowing for effortless submission of simple580

calculations. Short usage examples of the DEEPQMC command line interface are provided in581
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FIG. 7. Total energy deviations for small molecules of H, C, O, N, and F atoms. The presented molecules

participate in the reactions investigated by Nemec57. Reference total and HF energies are taken from the

review of O’Neill60, while SJ VMC and SJ DMC results are taken from the work of Nemec57. Results for

the hydrogen molecule are omitted, as it is described nearly exactly by all depicted methods. Error bars

denote the sampling error as estimated according to (35).

Appendix B.582

A. Small molecule reactions583

The electronic contributions to the reaction energies of 12 reactions involving small inorganic584

molecules and hydrocarbons are investigated. These reactions were used by Nemec57 to bench-585

mark the accuracy of Slater–Jastrow (SJ) type trial wave functions, constructed following Drum-586

mond et al.58 using electron-electron, electron-nucleus, and electron-electron-nucleus terms in the587

Jastrow factor. The 14 participating molecules are built from H, C, O, N, and F atoms, containing588

at least 2 and at most 22 electrons. To facilitate the comparison with the DMC results of Nemec57,589

the same molecular geometries are considered, obtained from the work of Feller59. Reference590

energies are taken from the review of O’Neill60. All electron, complete basis set extrapolated591

CCSD(T) energies are computed in house, using the PySCF program package36.592

First, single-point electronic energies obtained for the participating molecules are compared593

in Figure 7. On the vertical axis, the error of the recovered total energy is plotted, for VMC594

and DMC calculations utilizing SJ type trial wave functions, and for VMC with deep-learning595

ansatzes. Looking at Figure 7, one can observe that the total energy errors of SJ-VMC ansatzes596

are consistently above 47 mEh (with a mean of 114 mEh), while the associated DMC errors are597
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in the range of 8 - 50 mEh (26 mEh on average). In comparison, deep-learning ansatzes exhibit598

at maximum only 11 mEh total energy error, with a mean deviation of 2.6 mEh. While the main599

goal of quantum chemistry methods is to accurately model energy differences, rather than recover600

exact total energies, it is encouraging to see that DEEPQMC and deep-learning ansatzes in general601

are very competitive in this area.602

The accuracy of the energy differences obtained with SJ-DMC, CCSD(T), and deep-learning603

QMC methods are compared in Figure 8. Note that energy differences obtained with SJ-VMC are604

not shown in this figure, as they are an order of magnitude less accurate than the depicted ap-605

proaches. Comparing SJ-DMC results with those obtained from DEEPQMC, one concludes that606

combining the VMC method with expressive deep-learning ansatzes greatly increases its accuracy,607

surpassing SJ-DMC on eleven out of twelve reactions. The accuracy advantage of DEEPQMC’s608

PauliNet2, FermiNet, and DeepErwin ansatzes is similarly clear when comparing their respective609

reaction energy mean absolute deviations (MADs) of 2.4 mEh and 2.3 mEh, and 1.5 mEh to the 7.6610

mEh of SJ-DMC. As a final comparison, Figure 8 also shows the reaction energy differences ob-611

tained from a complete basis set extrapolated, all-electron CCSD(T). Not surprisingly, CCSD(T)612

performs outstandingly on these small, single reference systems in equilibrium geometry, achiev-613

ing a MAD of 3.4 mEh, and chemical accuracy (less than 1 kcal/mol or 1.6 mEh error) on four614

reactions. In comparison, the MAD value of PauliNet2 for this exemplary study with DEEPQMC615

is found to be below that of CCSD(T), and chemical accuracy is achieved on seven out of twelve616

reactions.617618

B. Transition metal oxides619

The effects of utilizing pseudopotentials in variational optimization of deep-learning molec-620

ular wave function are evaluated on a series of four first-row transition metal oxides. The bond621

lengths of the ScO, TiO, VO, and CrO molecules are taken from the experimental results of Annab-622

erdieyev et al.61. The latest ccECP pseudopotentials61 are applied to the transition metal atoms623

only, replacing neon-like cores of 10 electrons. Although replacing argon cores (18 electrons)624

with pseudopotentials would result in even larger computational savings, this is avoided as the625

third shell electrons are known to play a non-negligible role in the bond formation of transition626

metal atoms62. Apart from the introduction of pseudopotentials, the ansatz employed on small627

molecule reactions (Section VIII A) is utilized here without further modifications.628
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FIG. 8. Reaction energy deviations for the reactions involving small molecules of H, C, O, N, and

F atoms. Reference reaction energies are computed from the electronic energies reviewed by O’Neill60,

SJ-DMC results are obtained from Nemec57, while complete basis set extrapolated CCSD(T) values are

calculated in house using PySCF36. The energies for PauliNet2, FermiNet and DeepErwin are obtained

with the DEEPQMC program package. The range of ±1 kcal/mol deviation (often referred to as chemical

accuracy) is highlighted with dashed lines.

Comparing the technical details of pseudopotential calculations to all-electron ones, the advan-629

tage of the former is clear. Due to the exclusion of the fastest moving core electrons, the length630

of the electron position updates is sixfold increased, and higher accuracy is achieved in a given631

number of training steps, at about half of the computational cost. Next, the dissociation energies632

of the four transition metal oxides are estimated. The dissociation energy for transition metal X is633
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FIG. 9. Dissociation energy of transition metal oxides calculated using different methods. DEEP-

QMC+ECP result was obtained using 55000 training steps and 5000 evaluation steps. The results for

FermiNet+ECP are taken from Li et al.16, where they used 10 times more steps and consequently achieve

higher accuracy. Other results are from the references62,64.

defined as634

∆EXO
d = EX +EO −EXO , (37)

where EO = −75.0631(1)Ha is the result of an all-electron calculation with the same hyper-635

parameters. Figure 9 compares the obtained dissociation energies to experimental values63, and636

some other accurate computational methods like CCSD(T)61, FermiNet16, auxiliary field quantum637

Monte Carlo (AFQMC), semi-stochastic heat batch configuration interaction (SHCI), and density638

matrix renormalization group (DMRG)64. Apart from the TiO case, the accuracy of DEEPQMC639

with pseudopotentials is comparable to other theoretical methods, such as CCSD(T) or AFQMC.640

The fact that the dissociation energy estimates with DEEPQMC are systematically lower than the641

experimental results, indicates that the single atoms are described more accurately than the oxide642

molecules. This can be counteracted by increasing the expressiveness of the ansatz and investing643

more compute. Note that results obtained with FermiNet16 utilized a larger ansatz and trained for644

about ten times more training iterations than done in this study.645
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IX. SUMMARY AND CONCLUSIONS646

We have presented the DEEPQMC program package – a general variational quantum Monte647

Carlo framework for optimizing deep-learning molecular wave functions. The implementation fo-648

cuses on modularity, facilitating rapid development of new ansatzes, and provides maximal free-649

dom in choosing the specifics of the variational training setup. The ansatz shipped with DEEP-650

QMC attempts to unify most of the currently existing deep-learning molecular wave functions,651

while remaining easy to extend as new models emerge. To reduce the computational complexity652

associated with heavy nuclei, some popular precomputed pseudopotentials are also implemented.653

Using the framework provided by DEEPQMC, the most important practical aspects of varia-654

tional optimization of deep-learning molecular wave functions are discussed. The importance of a655

proper gradient estimator along with robust gradient clipping is highlighted. For consistent ansatz656

initialization, supervised pretraining to HF wave functions is suggested. The advantages of using657

the second-order KFAC optimizer are demonstrated, along with a rationalization of its effective-658

ness. The theoretical convergence of the Markov Chain Monte Carlo sampling error is verified,659

and MALA is shown to be more effective in obtaining decorrelated samples than the widely uti-660

lized Random Walk MCMC algorithm. The empirical scaling of the method’s computational cost661

is found to be more favorable than the most popular post-HF approaches, while its large prefactor662

is identified as an obstacle on the path to wider adoption.663

The black-box application of the program package is demonstrated in two significantly different664

settings. The electronic reaction energies of 12 small molecule reactions are computed with a665

mean absolute deviation of 1.5 mEh, and compared to the 3.4 mEh achieved by CCSD(T) and 7.6666

mEh achieved by DMC with SJ ansatzes. Using the same ansatz hyperparameters, dissociation667

energies are computed for a series of transition metal monoxides, utilizing the latest ccECP61
668

pseudopotential. Improved training characteristics compared to all-electron calculations highlight669

the benefit of employing pseudopotentials. The accuracies of the predicted dissociation energies670

are on par with or exceed those of some other recently popularized methods such as auxiliary field671

quantum Monte Carlo, or density matrix renormalization group.672

To conclude, the presented method shows great promise to become an easy-to-use, general,673

black-box method accurately describing the molecular electronic structure. Especially encourag-674

ing is the favorable scaling of computational requirements with increasing system size. It is easy675

to envision that after further development reducing the large prefactor of the computational costs,676
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the DEEPQMC package will prove valuable to the wider quantum chemistry community.677
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Appendix A: Additional scaling experiments810

1. Pseudopotentials811

Figure 10 shows the scaling of the run time of the non-local pseudopotential evaluation (second812

term in (12)) on the third and fourth-row atoms. This term dominates the total computational813

overhead of using pseudopotentials overwhelmingly. From the 5 nested summations of (12), only814

the sum over the valence electrons scales with the number of electrons, hinting at an approximate815

linear scaling with system size. Looking at Figure 10, the obtained empirical scaling of N1.19 is in816

good agreement with expectations. The sudden jump in run time from 20 to 21 electrons is caused817

by the reduction of valence electrons, as the utilized ccECP pseudopotentials use a larger core for818

4p elements than for 3d ones.819

2. Memory requirement820

For all investigated applications, the memory requirement bottleneck is presented by the com-821

putation of the Laplacian of the wave function, ∑
3N
i

∂ 2

∂ 2ri
ψθ(r). In this step, one obtains second822

derivatives of the wave function with respect to the electron coordinates. We obtain the derivatives823

of the wave function by applying automatic differentiation in backward-forward mode. While the824

gradient ∇rψθ is obtained in one backward pass for all coordinates, the diagonal of the Hessian825

(
∂ 2ψθ

∂ 2ri
) requires an additional 3N forward mode differentiations to compute, one for each electron826

coordinate. Due to the flexible function transformations of JAX, both the serial and parallel exe-827
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FIG. 10. Scaling of the compute time of the non-local part of the ccECP pseudopotential. The evalua-

tion of the second term of Eq. (11) on a single NVIDIA GeForce RTX 3090 GPU. An exponential fit gives

a scaling exponent of 1.19±0.04 with the number of valence (explicitly treated) electrons. The pseudopo-

tential uses a Neon core for elements up to Zn and a larger core for heavier atoms.
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FIG. 11. Comparing the memory requirements and run times of the serial and parallel Laplacian

computations. Data is obtained by evaluating the Laplacian of an untrained DEEPQMC ansatz with respect

to all electron coordinates. The parallel implementation computes all diagonal elements of the Hessian at

once, while the serial version computes one entry at a time. The number of diagonal Hessian entries scales

linearly with the number of electrons. Run times measured on a single Nvidia GTX 1080 Ti GPU.

38

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
57

51
2



Accepted to J. Chem. Phys. 10.1063/5.0157512

cution of the 3N forward mode differentiation passes can be implemented in a few lines of code,828

with the two implementations presumably differing in how they trade computational efficiency for829

memory requirement.830

To decide between the serial and parallel approach to the Laplacian computation, benchmark831

calculations on a series of atoms with increasing nuclear charges are performed. The obtained832

relative memory requirements of the parallel and serial computations are presented on the left833

vertical axis of Figure 11. The observed linear scaling of the relative memory requirement between834

parallel and serial evaluations can be understood by considering that the parallel implementation835

holds data for all 3N backward passes in memory, while the serial approach stores data for a single836

pass at a time. However, the prefactor of the scaling curve is significantly less than three, which837

indicates that JAX performs some optimizations on the parallel code that reduce the naive 3N838

memory requirement multiplier. Considering run times of the two versions (lower panel of 11)839

it is found that the relative timings of the serial implementation over the parallel implementation840

do not scale with the system size. In fact, the ratio of run times between the serial and parallel841

implementations appears to converge around 1.5. Taking the above observations into account, the842

serial implementation of the Laplacian evaluation is chosen, due to its favorable scaling memory843

requirements which outweigh the slight, non-scaling run time edge of the parallel implementation.844

Appendix B: Usage of DEEPQMC845

In this section, we provide a few minimal examples of the usage of the DEEPQMC command846

line interface. The interface is based on HYDRA, which provides a modular way to configure and847

execute complex jobs. DEEPQMC implements a wide variety of configuration options for the848

wave function ansatz as well as the hyperparameters of training and evaluation. For ease of use,849

the package includes predefined configuration files, which can be augmented using the command850

line or extended with custom configuration files. For a thorough tutorial and API documentation851

the reader is referred to the DEEPQMC documentation. For examples of typical DEEPQMC852

commands see Figure 12.853
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# Optimize the default ansatz for H2O using decorrelated Langevin Sampling and

# a reduced KFAC norm constraint

deepqmc hamil/mol=H2O task/sampler=decorr_langevin task.opt.norm_constraint =0.0005

# Now use a FermiNet ansatz along with its default hyperparameters

deepqmc ansatz=ferminet task=train_ferminet hamil/mol=H2O hydra.run.dir=fn

# Evaluate the previously trained ansatz using 10k inference steps

deepqmc task=evaluate task.restdir=fn +task.steps =10000

FIG. 12. Example usage of the DEEPQMC program package through its command line interface.
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